早教吧 育儿知识 作业答案 考试题库 百科 知识分享

四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形

题目详情
四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.

(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形(如图①),其中相对的两对三角形的面积之积相等.你能证明这个结论吗?试试看.
已知:在四边形ABCD中,O是对角线BD上任意一点.(如图①)
求证:S△OBC•S△OAD=S△OAB•S△OCD
(2)在三角形中(如图②),你能否归纳出类似的结论?若能,写出你猜想的结论,并证明:若不能,说明理由.
▼优质解答
答案和解析

证明:(1)分别过点A、C,做AE⊥DB,交DB的延长线于E,CF⊥BD于F,
则有:S△AOB=
1
2
BO•AE,
S△COD=
1
2
DO•CF,
S△AOD=
1
2
DO•AE,
S△BOC=
1
2
BO•CF,
∴S△AOB•S△COD=
1
4
BO•DO•AE•CF,
S△AOD•S△BOC=
1
4
BO•DO•CF•AE,
∴S△AOB•S△COD=S△AOD•S△BOC.;
(2)能.
从三角形的一个顶点与对边上任意一点的连线上任取一点,与三角形的另外两个顶点连线,将三角形分成四个小三角形,其中相对的两对三角形的面积之积相等.
或S△AOD•S△BOC=S△AOB•S△DOC
已知:在△ABC中,D为AC上一点,O为BD上一点,
求证:S△AOD•S△BOC=S△AOB•S△DOC
证明:分别过点A、C,作AE⊥BD,交BD的延长线于E,作CF⊥BD于F,
则有:S△AOD=
1
2
DO•AE,S△BOC=
1
2
BO•CF,
S△OAB=
1
2
OB•AE,S△DOC=
1
2
OD•CF,
∴S△AOD•S△BOC=
1
4
OB•OD•AE•CF,
S△OAB•S△DOC=
1
4
BO•OD•AE•CF,
∴S△AOD•S△BOC=S△OAB•S△DOC