早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)=x|2a-x|+2x,a∈R.(1)若a=0,判断函数y=f(x)的奇偶性,并加以证明;(2)若函数f(x)在R上是增函数,求实数a的取值范围;(3)若存在实数a∈[-2,2],使得关于x的方程f(

题目详情
已知函数f(x)=x|2a-x|+2x,a∈R.
(1)若a=0,判断函数y=f(x)的奇偶性,并加以证明;
(2)若函数f(x)在R上是增函数,求实数a的取值范围;
(3)若存在实数a∈[-2,2],使得关于x的方程f(x)-tf(2a)=0有三个不相等的实数根,求实数t的取值范围.
▼优质解答
答案和解析
(1)函数y=f(x)为奇函数.
当a=0时,f(x)=x|x|+2x,
∴f(-x)=-x|x|-2x=-f(x),
∴函数y=f(x)为奇函数;
(2)f(x)=
x2+(2−2a)x,x≥2a
−x2+(2+2a)x,x<2a

当x≥2a时,f(x)的对称轴为:x=a-1;
当x<2a时,y=f(x)的对称轴为:x=a+1;
∴当a-1≤2a≤a+1时,f(x)在R上是增函数,
即-1≤a≤1时,函数f(x)在R上是增函数;      
(3)方程f(x)-tf(2a)=0的解即为方程f(x)=tf(2a)的解.
①当-1≤a≤1时,函数f(x)在R上是增函数,∴关于x的方程f(x)=tf(2a)不可能有三个不相等的实数根;                          …(9分)
②当a>1时,即2a>a+1>a-1,
∴f(x)在(-∞,a+1)上单调增,在(a+1,2a)上单调减,在(2a,+∞)上单调增,
∴当f(2a)<tf(2a)<f(a+1)时,关于x的方程f(x)=tf(2a)有三个不相等的实数根;
即4a<t-4a<(a+1)2
∵a>1,
1<t<
1
4
(a+
1
a
+2).
h(a)=
1
4
(a+
1
a
+2),
∵存在a∈[-2,2],使得关于x的方程f(x)=tf(2a)有三个不相等的实数根,
∴1<t<h(a)max
又可证h(a)=
1
4
(a+
1
a
+2)在(1,2]上单调增
∴<h(a)max=
9
8

∴1<t<
9
8

③当a<-1时,即2a<a-1<a+1,
∴f(x)在(-∞,2a)上单调增,在(2a,a-1)上单调减,在(a-1,+∞)上单调增,
∴当f(a-1)<tf(2a)<f(2a)时,关于x的方程f(x)=tf(2a)有三个不相等的实数根;
即-(a-1)2<t-4a<4a,
∵a<-1,
1<t<−
1
4
(a+
1
a
−2),
g(a)=−
1
4
(a+
1
a
−2),
∵存在a∈[-2,2],使得关于x的方程f(x)=tf(2a)有三个不相等的实数根,
∴1<t<g(a)max
又可证g(a)=−
1
4
(a+
1
a
−2)在[-2,-1)上单调减,
∴g(a)max=
9
8

∴1<t<
9
8
;                                   
综上:1<t<
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号