早教吧作业答案频道 -->数学-->
已知f(α)=sin(α-π2)cos(3π2+α)tan(π-α)tan(-α-π)sin(-α-π),(-π2<α<π2)(Ⅰ)若cos(α-3π2)=15,求f(α)的值.(Ⅱ)若sin(α-π6)=-15,求f(α+π3)的值.
题目详情
已知f(α)=
,(-
<α<
)
(Ⅰ)若cos(α-
)=
,求f(α)的值.
(Ⅱ)若sin(α-
)=-
,求f(α+
)的值.已知f(α)=
,(-
<α<
)
(Ⅰ)若cos(α-
)=
,求f(α)的值.
(Ⅱ)若sin(α-
)=-
,求f(α+
)的值.f(α)=
,(-
<α<
)
(Ⅰ)若cos(α-
)=
,求f(α)的值.
(Ⅱ)若sin(α-
)=-
,求f(α+
)的值.
sin(α-
)cos(
+α)tan(π-α) tan(-α-π)sin(-α-π) sin(α-
)cos(
+α)tan(π-α) sin(α-
)cos(
+α)tan(π-α)
π 2 π π 2 2
3π 2 3π 3π 2 2 tan(-α-π)sin(-α-π) tan(-α-π)sin(-α-π)
π 2 π π 2 2
π 2 π π 2 2
cos(α-
)=
,求f(α)的值.
(Ⅱ)若sin(α-
)=-
,求f(α+
)的值.
3π 2 3π 3π 2 2
1 5 1 1 5 5
sin(α-
)=-
,求f(α+
)的值.
π 6 π π 6 6
1 5 1 1 5 5 f(α+
)的值.
π 3 π π 3 3
sin(α-
| ||||
tan(-α-π)sin(-α-π) |
π |
2 |
π |
2 |
(Ⅰ)若cos(α-
3π |
2 |
1 |
5 |
(Ⅱ)若sin(α-
π |
6 |
1 |
5 |
π |
3 |
sin(α-
| ||||
tan(-α-π)sin(-α-π) |
π |
2 |
π |
2 |
(Ⅰ)若cos(α-
3π |
2 |
1 |
5 |
(Ⅱ)若sin(α-
π |
6 |
1 |
5 |
π |
3 |
sin(α-
| ||||
tan(-α-π)sin(-α-π) |
π |
2 |
π |
2 |
(Ⅰ)若cos(α-
3π |
2 |
1 |
5 |
(Ⅱ)若sin(α-
π |
6 |
1 |
5 |
π |
3 |
sin(α-
| ||||
tan(-α-π)sin(-α-π) |
π |
2 |
3π |
2 |
π |
2 |
3π |
2 |
π |
2 |
3π |
2 |
π |
2 |
3π |
2 |
π |
2 |
π |
2 |
cos(α-
3π |
2 |
1 |
5 |
(Ⅱ)若sin(α-
π |
6 |
1 |
5 |
π |
3 |
3π |
2 |
1 |
5 |
sin(α-
π |
6 |
1 |
5 |
π |
3 |
π |
6 |
1 |
5 |
π |
3 |
π |
3 |
▼优质解答
答案和解析
f(α)=
=
=-cosα,
(Ⅰ)若cos(α-
)=
,则有-sinα=
,即sinα=-
.
再由-
<α<
,可得cosα=
.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
.
sin(α-
)cos(
+α)tan(π-α) tan(-α-π)sin(-α-π) sin(α-
)cos(
+α)tan(π-α) sin(α-
)cos(
+α)tan(π-α) sin(α-
π 2 π π π2 2 2)cos(
3π 2 3π 3π 3π2 2 2+α)tan(π-α)tan(-α-π)sin(-α-π) tan(-α-π)sin(-α-π) tan(-α-π)sin(-α-π)=
=-cosα,
(Ⅰ)若cos(α-
)=
,则有-sinα=
,即sinα=-
.
再由-
<α<
,可得cosα=
.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
.
-cosα•sinα•(-tanα) -tanα•sinα -cosα•sinα•(-tanα) -cosα•sinα•(-tanα) -cosα•sinα•(-tanα)-tanα•sinα -tanα•sinα -tanα•sinα=-cosα,
(Ⅰ)若cos(α-
)=
,则有-sinα=
,即sinα=-
.
再由-
<α<
,可得cosα=
.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
. cos(α-
3π 2 3π 3π 3π2 2 2)=
1 5 1 1 15 5 5,则有-sinα=
,即sinα=-
.
再由-
<α<
,可得cosα=
.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
.
1 5 1 1 15 5 5,即sinα=-
.
再由-
<α<
,可得cosα=
.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
.
1 5 1 1 15 5 5.
再由-
<α<
,可得cosα=
.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
. -
π 2 π π π2 2 2<α<
π 2 π π π2 2 2,可得cosα=
.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
.
2
5 2
2
2
6 6 6 65 5 5.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
. -
2
5 2
2
2
6 6 6 65 5 5.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
. f(α+
π 3 π π π3 3 3)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
. -cos(α+
π 3 π π π3 3 3)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
. -(cosαcos
π 3 π π π3 3 3-sinαsin
π 3 π π π3 3 3)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
. -(
1 2 1 1 12 2 2cosα-
2
3 3 3 32 2 2sinα)=
sinα-
cosα=sin(α-
)=-
.
2
3 3 3 32 2 2sinα-
1 2 1 1 12 2 2cosα=sin(α-
)=-
. sin(α-
π 6 π π π6 6 6)=-
1 5 1 1 15 5 5.
sin(α-
| ||||
tan(-α-π)sin(-α-π) |
-cosα•sinα•(-tanα) |
-tanα•sinα |
(Ⅰ)若cos(α-
3π |
2 |
1 |
5 |
1 |
5 |
1 |
5 |
再由-
π |
2 |
π |
2 |
2
| ||
5 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
sin(α-
| ||||
tan(-α-π)sin(-α-π) |
π |
2 |
3π |
2 |
π |
2 |
3π |
2 |
π |
2 |
3π |
2 |
π |
2 |
3π |
2 |
-cosα•sinα•(-tanα) |
-tanα•sinα |
(Ⅰ)若cos(α-
3π |
2 |
1 |
5 |
1 |
5 |
1 |
5 |
再由-
π |
2 |
π |
2 |
2
| ||
5 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
-cosα•sinα•(-tanα) |
-tanα•sinα |
(Ⅰ)若cos(α-
3π |
2 |
1 |
5 |
1 |
5 |
1 |
5 |
再由-
π |
2 |
π |
2 |
2
| ||
5 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
3π |
2 |
1 |
5 |
1 |
5 |
1 |
5 |
再由-
π |
2 |
π |
2 |
2
| ||
5 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
1 |
5 |
1 |
5 |
再由-
π |
2 |
π |
2 |
2
| ||
5 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
1 |
5 |
再由-
π |
2 |
π |
2 |
2
| ||
5 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
π |
2 |
π |
2 |
2
| ||
5 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
2
| ||
5 |
6 |
6 |
6 |
6 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
2
| ||
5 |
6 |
6 |
6 |
6 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
1 |
2 |
| ||
2 |
3 |
3 |
3 |
3 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
| ||
2 |
3 |
3 |
3 |
3 |
1 |
2 |
π |
6 |
1 |
5 |
π |
6 |
1 |
5 |
看了 已知f(α)=sin(α-π...的网友还看了以下:
如图均为有理数,各行、各列以及两条对角线上三个数之和都相等,试计算(b-c+g-3)2-(b-c- 2020-04-26 …
Rt△ABC中,斜边BC为m,以BC的中点O为圆心作直径为n(n<m2)的圆,分别交BC于P,Q两 2020-04-26 …
(1)求sin27°+cos45°sin18°cos27°-sin45°sin18°的值.(2)已 2020-05-12 …
解决下列问题:已知二次根式2x2+2(1)当x=3时,求2x2+2的值.(2)若x是正数,2x2+ 2020-05-14 …
已知aΔb=(a-b)2,a※b=(a+b)(a-b),例如,1Δ2=(1-2)2=1,1※2=( 2020-05-15 …
已知(2-5x)3=a0+a1x+a2x2+a3x3,求(a0+a2)2-(a1+a3)2的值. 2020-05-17 …
已知(2−8x)50=a0+a1x+a2x2+…+a50x50,其她a0,a1,a2…,a50是常 2020-05-17 …
5是x+5.2=10.2的解..(判断对错) 2020-06-11 …
已知a是一元二次方程x2+3x-2=0的实数根,求代数式a−33a2−6a÷(a+2−5a−2)的 2020-06-12 …
设an=∫π40tannxdx:(1)求∞n=11n(an+an+2)的值.(2)试证:对任意的常 2020-06-13 …