早教吧作业答案频道 -->数学-->
已知f(α)=sin(α-π2)cos(3π2+α)tan(π-α)tan(-α-π)sin(-α-π),(-π2<α<π2)(Ⅰ)若cos(α-3π2)=15,求f(α)的值.(Ⅱ)若sin(α-π6)=-15,求f(α+π3)的值.
题目详情
已知f(α)=
,(-
<α<
)
(Ⅰ)若cos(α-
)=
,求f(α)的值.
(Ⅱ)若sin(α-
)=-
,求f(α+
)的值.已知f(α)=
,(-
<α<
)
(Ⅰ)若cos(α-
)=
,求f(α)的值.
(Ⅱ)若sin(α-
)=-
,求f(α+
)的值.f(α)=
,(-
<α<
)
(Ⅰ)若cos(α-
)=
,求f(α)的值.
(Ⅱ)若sin(α-
)=-
,求f(α+
)的值.
sin(α-
)cos(
+α)tan(π-α) tan(-α-π)sin(-α-π) sin(α-
)cos(
+α)tan(π-α) sin(α-
)cos(
+α)tan(π-α)
π 2 π π 2 2
3π 2 3π 3π 2 2 tan(-α-π)sin(-α-π) tan(-α-π)sin(-α-π)
π 2 π π 2 2
π 2 π π 2 2
cos(α-
)=
,求f(α)的值.
(Ⅱ)若sin(α-
)=-
,求f(α+
)的值.
3π 2 3π 3π 2 2
1 5 1 1 5 5
sin(α-
)=-
,求f(α+
)的值.
π 6 π π 6 6
1 5 1 1 5 5 f(α+
)的值.
π 3 π π 3 3
sin(α-
| ||||
tan(-α-π)sin(-α-π) |
π |
2 |
π |
2 |
(Ⅰ)若cos(α-
3π |
2 |
1 |
5 |
(Ⅱ)若sin(α-
π |
6 |
1 |
5 |
π |
3 |
sin(α-
| ||||
tan(-α-π)sin(-α-π) |
π |
2 |
π |
2 |
(Ⅰ)若cos(α-
3π |
2 |
1 |
5 |
(Ⅱ)若sin(α-
π |
6 |
1 |
5 |
π |
3 |
sin(α-
| ||||
tan(-α-π)sin(-α-π) |
π |
2 |
π |
2 |
(Ⅰ)若cos(α-
3π |
2 |
1 |
5 |
(Ⅱ)若sin(α-
π |
6 |
1 |
5 |
π |
3 |
sin(α-
| ||||
tan(-α-π)sin(-α-π) |
π |
2 |
3π |
2 |
π |
2 |
3π |
2 |
π |
2 |
3π |
2 |
π |
2 |
3π |
2 |
π |
2 |
π |
2 |
cos(α-
3π |
2 |
1 |
5 |
(Ⅱ)若sin(α-
π |
6 |
1 |
5 |
π |
3 |
3π |
2 |
1 |
5 |
sin(α-
π |
6 |
1 |
5 |
π |
3 |
π |
6 |
1 |
5 |
π |
3 |
π |
3 |
▼优质解答
答案和解析
f(α)=
=
=-cosα,
(Ⅰ)若cos(α-
)=
,则有-sinα=
,即sinα=-
.
再由-
<α<
,可得cosα=
.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
.
sin(α-
)cos(
+α)tan(π-α) tan(-α-π)sin(-α-π) sin(α-
)cos(
+α)tan(π-α) sin(α-
)cos(
+α)tan(π-α) sin(α-
π 2 π π π2 2 2)cos(
3π 2 3π 3π 3π2 2 2+α)tan(π-α)tan(-α-π)sin(-α-π) tan(-α-π)sin(-α-π) tan(-α-π)sin(-α-π)=
=-cosα,
(Ⅰ)若cos(α-
)=
,则有-sinα=
,即sinα=-
.
再由-
<α<
,可得cosα=
.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
.
-cosα•sinα•(-tanα) -tanα•sinα -cosα•sinα•(-tanα) -cosα•sinα•(-tanα) -cosα•sinα•(-tanα)-tanα•sinα -tanα•sinα -tanα•sinα=-cosα,
(Ⅰ)若cos(α-
)=
,则有-sinα=
,即sinα=-
.
再由-
<α<
,可得cosα=
.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
. cos(α-
3π 2 3π 3π 3π2 2 2)=
1 5 1 1 15 5 5,则有-sinα=
,即sinα=-
.
再由-
<α<
,可得cosα=
.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
.
1 5 1 1 15 5 5,即sinα=-
.
再由-
<α<
,可得cosα=
.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
.
1 5 1 1 15 5 5.
再由-
<α<
,可得cosα=
.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
. -
π 2 π π π2 2 2<α<
π 2 π π π2 2 2,可得cosα=
.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
.
2
5 2
2
2
6 6 6 65 5 5.
∴f(α)=-cosα=-
.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
. -
2
5 2
2
2
6 6 6 65 5 5.
(Ⅱ)f(α+
)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
. f(α+
π 3 π π π3 3 3)=-cos(α+
)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
. -cos(α+
π 3 π π π3 3 3)=-(cosαcos
-sinαsin
)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
. -(cosαcos
π 3 π π π3 3 3-sinαsin
π 3 π π π3 3 3)
=-(
cosα-
sinα)=
sinα-
cosα=sin(α-
)=-
. -(
1 2 1 1 12 2 2cosα-
2
3 3 3 32 2 2sinα)=
sinα-
cosα=sin(α-
)=-
.
2
3 3 3 32 2 2sinα-
1 2 1 1 12 2 2cosα=sin(α-
)=-
. sin(α-
π 6 π π π6 6 6)=-
1 5 1 1 15 5 5.
sin(α-
| ||||
tan(-α-π)sin(-α-π) |
-cosα•sinα•(-tanα) |
-tanα•sinα |
(Ⅰ)若cos(α-
3π |
2 |
1 |
5 |
1 |
5 |
1 |
5 |
再由-
π |
2 |
π |
2 |
2
| ||
5 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
sin(α-
| ||||
tan(-α-π)sin(-α-π) |
π |
2 |
3π |
2 |
π |
2 |
3π |
2 |
π |
2 |
3π |
2 |
π |
2 |
3π |
2 |
-cosα•sinα•(-tanα) |
-tanα•sinα |
(Ⅰ)若cos(α-
3π |
2 |
1 |
5 |
1 |
5 |
1 |
5 |
再由-
π |
2 |
π |
2 |
2
| ||
5 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
-cosα•sinα•(-tanα) |
-tanα•sinα |
(Ⅰ)若cos(α-
3π |
2 |
1 |
5 |
1 |
5 |
1 |
5 |
再由-
π |
2 |
π |
2 |
2
| ||
5 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
3π |
2 |
1 |
5 |
1 |
5 |
1 |
5 |
再由-
π |
2 |
π |
2 |
2
| ||
5 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
1 |
5 |
1 |
5 |
再由-
π |
2 |
π |
2 |
2
| ||
5 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
1 |
5 |
再由-
π |
2 |
π |
2 |
2
| ||
5 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
π |
2 |
π |
2 |
2
| ||
5 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
2
| ||
5 |
6 |
6 |
6 |
6 |
∴f(α)=-cosα=-
2
| ||
5 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
2
| ||
5 |
6 |
6 |
6 |
6 |
(Ⅱ)f(α+
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
π |
3 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
π |
3 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
π |
3 |
π |
3 |
=-(
1 |
2 |
| ||
2 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
1 |
2 |
| ||
2 |
3 |
3 |
3 |
3 |
| ||
2 |
1 |
2 |
π |
6 |
1 |
5 |
| ||
2 |
3 |
3 |
3 |
3 |
1 |
2 |
π |
6 |
1 |
5 |
π |
6 |
1 |
5 |
看了 已知f(α)=sin(α-π...的网友还看了以下:
这个函数怎么求积分0到75度的积分?2*m*(0.15*tan(b)+a)^2/((15-100/ 2020-04-09 …
负1又13分之12乘3又15分之2减1又15分之13乘4又13分之12减3乘(负1又15请告诉我 2020-05-16 …
初二数学题我们来证明“2=3”.这是西班牙流行的一个“诡辩”,人们用下述方法“证明”这一结论.因为 2020-05-16 …
(1+1/5-0.1+2/15)x(0.2-1/10+2/15+3/1/6)-(1+1/5-1/1 2020-05-21 …
一道小学算数题12×12+15×15-[12×12÷2+(15-3)×15÷2+(12+15)×1 2020-06-18 …
1,3,5,7,15,31,(),(本人得出结论为1+3+5-2=71+3+5+7-1=151+3 2020-07-18 …
:15-4/5÷3/2-7/153/4×14/15-3/4÷15/213/15÷5/3+2/15× 2020-07-18 …
怎样使用倍角公式的问题sin15cos15=?我套用倍角公式sin2a=2sinacosasin( 2020-08-02 …
计算能简则简(1)3/4÷7/8÷15/14(2)(4/9+2/15)÷2/15(3)3/20计算能 2020-11-26 …
我有4到计算题不会,看看那位高人会,就帮我答吧!1,计算,能简算的要简算!(1),3乘(15分之2) 2020-12-27 …