早教吧作业答案频道 -->数学-->
设E={sinnt}n≥1,求证:E在C[0,π]中不是列紧的.
题目详情
设E = {sin nt}n ≥ 1,求证:E在C[0,π]中不是列紧的.
▼优质解答
答案和解析
证明:显然E是一致有界的. 根据Arzela-Ascoli定理,我们只要证明E不是等度连续的即可. 我们的想法是找一个E中的点列fn,以及[0,π]中的两个点列sn和tn,使得 | sn − tn | → 0,但| fn(sn) − fn(tn) |不收敛于0. 事实上,这是可以做到的,只要令 fn (u) = sin (2n u),sn = (π/2)(1 + 1/(2n)),tn = (π/2)(1 − 1/(2n)). 则 sn + tn = π;sn − tn = π/(2n)→ 0 (n→∞). 因此,| fn(sn) − fn(tn) | = 2 | sin (2n sn) − sin (2n tn) | = 2 | sin (n (sn − tn)) cos (n (sn + tn) ) | = 2 | sin ( π/2) cos (n π) | = 2. 所以,E不是等度连续的.进而,E在C[0,π]中不是列紧的.
看了 设E={sinnt}n≥1,...的网友还看了以下:
一个证明,pi为圆周率,n为奇数1.设w为n次单位根(w=cos2pi/n+i*sin2pi/n) 2020-05-22 …
已知n是正偶数,用数学归纳法证明某命题时,若已假设n=k(k≥2且为偶数)时命题为真,则还需证明( 2020-06-11 …
设A为n阶矩阵.若存在正整数m使Am=O,则称A为n阶幂零矩阵.现设A为n阶幂零矩阵,E为n阶单位 2020-07-22 …
对数列{an}和{bn},若对任意正整数n,恒有bn≤an,则称数列{bn}是数列{an}的“下界 2020-07-31 …
已知n为正偶数,用数学归纳法证明()1时,若已假设n=k(k≥2为偶数)时命题为真,则还需要用归纳 2020-08-01 …
用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k 2020-08-01 …
用数学归纳法证明“n3+(n+1)3+(n+2)3,(n∈N+)能被9整除”,要利用归纳法假设证n 2020-08-01 …
已知n为正偶数,用数学归纳法证明1-12+13-14+…+1n−1=2(1n+2+1n+4+…+12 2020-11-07 …
已知n为正偶数,用数学归纳法证明1−12+13−14+…+1n+1=2(1n+2+1n+4+…+12 2020-11-07 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …