早教吧作业答案频道 -->数学-->
已知长方体ABCD-A'B'C'D'中,AB=BC=4,CC'=2则直线BC'和平面DBB'D'所成交的余弦值为
题目详情
已知长方体ABCD-A'B'C'D'中,AB=BC=4,CC'=2则直线BC'和平面DBB'D'所成交的余弦值为
▼优质解答
答案和解析
设正方形A'B'C'D'的对角线的交点为O'. 知C'O'垂直于B'D'.
又BB'垂直于平面A'B'C'D'.故BB'垂直于其内的直线C'O'.
即C'O'垂直于相交直线B'D',BB'. 故C'O'垂直于平面DBB'D'.
连接O'B, 则角O'BC' 即为BC'与平面DBB'D'所成角.
在三角形BO'C'中: BC'=根号(16+4)=2根号5.
O'C'=0.5*根号(16+16)=2根号2.
BO'=根号(4+8)=2根号3
故cos角O'BC'=[12+20-8]/[2*(2根号3)*2根号5]=24/[8根号15]=3/[根号15]
即所求角的余弦为:(根号15)/5
又BB'垂直于平面A'B'C'D'.故BB'垂直于其内的直线C'O'.
即C'O'垂直于相交直线B'D',BB'. 故C'O'垂直于平面DBB'D'.
连接O'B, 则角O'BC' 即为BC'与平面DBB'D'所成角.
在三角形BO'C'中: BC'=根号(16+4)=2根号5.
O'C'=0.5*根号(16+16)=2根号2.
BO'=根号(4+8)=2根号3
故cos角O'BC'=[12+20-8]/[2*(2根号3)*2根号5]=24/[8根号15]=3/[根号15]
即所求角的余弦为:(根号15)/5
看了 已知长方体ABCD-A'B'...的网友还看了以下:
黄昏时高悬在正南方天空是的半月是?a:东半部亮的上弦月b:西半部亮的下弦月c:东半部亮的下弦月D:西 2020-03-31 …
各个角的正弦、余弦计算简便方法,我们知道判断一个角的正弦和余弦值要判断这个角所在象限,进而判断它的 2020-04-11 …
请问以下说法是否正确?“主音胡琴定内弦为d、外弦为a;托音胡琴定内弦为G、外弦为d.”还有,内外弦 2020-06-07 …
求教吉他调弦1=D.2=B.3=G.4=D.5=A.6=D.怎么调弦啊求具体求教吉他调弦1=D.2 2020-07-11 …
《琵琶行》中的“大弦嘈嘈如急雨,小弦切切如私语”,描述了大弦和小弦的声音不同,主要是指()A.音色 2020-07-28 …
已知正弦和余弦的积求正切SinACosA=1/4求TanA..没其他任何条件...我试过平方求正弦 2020-07-30 …
余弦定理为三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的二倍.其中 2020-08-02 …
请问sin^2+cos^2=1是怎么来的?还有正弦和余弦定理的推导方法,sin^2+cos^2=1 2020-08-02 …
电磁场的两道填空题介电常数为ε的介质中,▽·E=,▽·D=(E和D上面有→)自由空间中时变电磁场满足 2020-11-28 …
《琵琶行》中3“大弦嘈嘈如急雨,小弦切切如私语”,描述了大弦和小弦3声音不同,主要是指()A.音色B 2020-12-01 …