早教吧作业答案频道 -->数学-->
1/(x+4)+1/(x+5)=1/(x+6)+1/(x+3)求解
题目详情
1/(x+4)+1/(x+5)=1/(x+6)+1/(x+3)求解
▼优质解答
答案和解析
1/(x+4)+1/(x+5)=1/(x+6)+1/(x+3)
1/(x+5)-1/(x+6)=1/(x+3)-1/(x+4)
1/[(x+5)(x+6)]=1/[(x+3)(x+4)]
(x+5)(x+6)=(x+3)(x+4)
x²+11x+30=x²+7x+12
x²+11x-x²-7x=12-30
4x=-18
x=-9/2
1/(x+5)-1/(x+6)=1/(x+3)-1/(x+4)
1/[(x+5)(x+6)]=1/[(x+3)(x+4)]
(x+5)(x+6)=(x+3)(x+4)
x²+11x+30=x²+7x+12
x²+11x-x²-7x=12-30
4x=-18
x=-9/2
看了 1/(x+4)+1/(x+5...的网友还看了以下: