早教吧作业答案频道 -->数学-->
初三上四组数学题.急!1、已知关于x、y的方程组{y2-4x=y+2y-mx=2有一个实数解.求m2、已知方程组{x2+y2-2x=0kx-y-k=0(1)求证:不论为何实数时,方程组总有两个不同的实数解(2)设方程组两个
题目详情
初三上四组数学题.急!
1、已知关于x、y的方程组{y2-4x=y+2 y-mx=2 有一个实数解.求m
2、已知方程组{x2+y2-2x=0 kx-y-k=0
(1)求证:不论为何实数时,方程组总有两个不同的实数解
(2)设方程组两个不同的实数解为{x=a y=b {x=a' y=b'
求证:(a-a')2+(b-b')2是一个常数
3、已知三角形ABC的三边为a,b,c.方程x2+2(a+c-b)x+2ac-b2=0有两个相等的实数根
(1)求证:三角形ABC是等边三角形
(2)若方程2x2+2k(a+c)+2ack2+5k-6=o有两个不相等的实数根,求k
4、设a、b、c为实数.求证:(b-2a+c)2大于等于3(a-2b+c)(a-c)
1、已知关于x、y的方程组{y2-4x=y+2 y-mx=2 有一个实数解.求m
2、已知方程组{x2+y2-2x=0 kx-y-k=0
(1)求证:不论为何实数时,方程组总有两个不同的实数解
(2)设方程组两个不同的实数解为{x=a y=b {x=a' y=b'
求证:(a-a')2+(b-b')2是一个常数
3、已知三角形ABC的三边为a,b,c.方程x2+2(a+c-b)x+2ac-b2=0有两个相等的实数根
(1)求证:三角形ABC是等边三角形
(2)若方程2x2+2k(a+c)+2ack2+5k-6=o有两个不相等的实数根,求k
4、设a、b、c为实数.求证:(b-2a+c)2大于等于3(a-2b+c)(a-c)
▼优质解答
答案和解析
1.把2个方程联立消y,得:m2x2+4mx-4x-mx=0
m2x2+(3m-4)x=0
因为有一个实数解,所以△=(3m-4)2=0
得m=4/3.
2.(1)证明:先把2个方程联立消y,得:(k2+1)x2 -(2k2+2)x + k2=0
△=(2k2+2)2-4k2(k2+1)
=4k2+4>0恒成立(因为k2≥0,再+4就>0)
所以方程组总有2个不同的实数根
(2)证明:由(1)问中得到的方程(k2+1)x2 -(2k2+2)x + k2=0,
用韦达定理,求x1+x2=(2k2+2)/(k2+1)=2
x1*x2=(k2)/(k2+1)
(a-a')2其实就是(x1-x2)2=(x1+x2)2-4x1x2=4/(k2+1)
(过程自己化简)
原题有方程:kx-y-k=0,y=kx-k
y1+y2=kx1-k+kx2-k=k(x1+x2)-2k=2k-2k=0 (前面已算出x1+x2=2)
y1*y2=k2(x1-1)(x2-1)=k2(x1x2-(x1+x2)+1)=(-k2)/(k2+1)
(b-b')2其实就是(y1-y2)2=(y1+y2)2-4y1y2=0-(-4k2)/(k2+1)
=(4k2)/(k2+1)
(a-a')2+(b-b')2=4/(k2+1) + (4k2)/(k2+1) = 4
3.(1)求证:因为方程x2+2(a+c-b)x+2ac-b2=0有两个相等的实数根
所以有△=4a2-8ab+4c2-8bc+4b2+4b2=4(a-b)2 +4(b-c)2=0
得:a=b,b=c
所以a=b=c
所以三角形ABC是等边三角形
(2)因为2x2+2k(a+c)+2ack2+5k-6=o有2个不相等的实数根
令a=c=1,得2x2+4k+2k2+5k-6=0
所以有△=0-8(2k2+9k-6)>0
化简得:2k2+9k-6
m2x2+(3m-4)x=0
因为有一个实数解,所以△=(3m-4)2=0
得m=4/3.
2.(1)证明:先把2个方程联立消y,得:(k2+1)x2 -(2k2+2)x + k2=0
△=(2k2+2)2-4k2(k2+1)
=4k2+4>0恒成立(因为k2≥0,再+4就>0)
所以方程组总有2个不同的实数根
(2)证明:由(1)问中得到的方程(k2+1)x2 -(2k2+2)x + k2=0,
用韦达定理,求x1+x2=(2k2+2)/(k2+1)=2
x1*x2=(k2)/(k2+1)
(a-a')2其实就是(x1-x2)2=(x1+x2)2-4x1x2=4/(k2+1)
(过程自己化简)
原题有方程:kx-y-k=0,y=kx-k
y1+y2=kx1-k+kx2-k=k(x1+x2)-2k=2k-2k=0 (前面已算出x1+x2=2)
y1*y2=k2(x1-1)(x2-1)=k2(x1x2-(x1+x2)+1)=(-k2)/(k2+1)
(b-b')2其实就是(y1-y2)2=(y1+y2)2-4y1y2=0-(-4k2)/(k2+1)
=(4k2)/(k2+1)
(a-a')2+(b-b')2=4/(k2+1) + (4k2)/(k2+1) = 4
3.(1)求证:因为方程x2+2(a+c-b)x+2ac-b2=0有两个相等的实数根
所以有△=4a2-8ab+4c2-8bc+4b2+4b2=4(a-b)2 +4(b-c)2=0
得:a=b,b=c
所以a=b=c
所以三角形ABC是等边三角形
(2)因为2x2+2k(a+c)+2ack2+5k-6=o有2个不相等的实数根
令a=c=1,得2x2+4k+2k2+5k-6=0
所以有△=0-8(2k2+9k-6)>0
化简得:2k2+9k-6
看了 初三上四组数学题.急!1、已...的网友还看了以下:
解方程y-2分之y-1=3-5分之y+2等(1)解方程y-(2分之y-1)=3-(5分之y+2 2020-05-16 …
u=cos(2x+y+z),其中z=f(x,y)由方程y*x^2-x^2*z-x=0确定,求:u对 2020-05-19 …
y={1+2(的2次方)}分之{1—2(的2次方)},定义域怎么求?最好写过程y={1+2(的x次 2020-05-23 …
问个关于数学对称轴问题知道一个点和一条对称轴的方程,怎么求这个点关于这条对称轴对称的另一个点的坐标 2020-06-03 …
判断一元二次方程(急`2 x的平方-(根号x +2)(根号x -2)=7是不是一元二次方程?不是请 2020-06-27 …
已道关于X的方程y已道关于X的方程y=-xˆ2+(2m+3)x+4-mˆ2的图像与X轴交与A。B2 2020-07-19 …
已知切点怎么求切线方程?y=x^2在(1,1)的切线方程怎么求已知切点怎么求切线方程?y=x^2在 2020-07-31 …
y1=4n^3,y2=3n^2,y3=n是差分方程差分方程y(n+2)+a(n)y(n+1)+a2 2020-07-31 …
已知抛物线y=3x^2=mx-2,(1)若m为整数,当关于X的方程y=3x^2=mx-2的两个有理 2020-08-01 …
拟合方程y=ax2(2是指数)数据为x=(9,9,9,11,11,11,13,13,13,15,1 2020-08-02 …