早教吧作业答案频道 -->数学-->
初三上四组数学题.急!1、已知关于x、y的方程组{y2-4x=y+2y-mx=2有一个实数解.求m2、已知方程组{x2+y2-2x=0kx-y-k=0(1)求证:不论为何实数时,方程组总有两个不同的实数解(2)设方程组两个
题目详情
初三上四组数学题.急!
1、已知关于x、y的方程组{y2-4x=y+2 y-mx=2 有一个实数解.求m
2、已知方程组{x2+y2-2x=0 kx-y-k=0
(1)求证:不论为何实数时,方程组总有两个不同的实数解
(2)设方程组两个不同的实数解为{x=a y=b {x=a' y=b'
求证:(a-a')2+(b-b')2是一个常数
3、已知三角形ABC的三边为a,b,c.方程x2+2(a+c-b)x+2ac-b2=0有两个相等的实数根
(1)求证:三角形ABC是等边三角形
(2)若方程2x2+2k(a+c)+2ack2+5k-6=o有两个不相等的实数根,求k
4、设a、b、c为实数.求证:(b-2a+c)2大于等于3(a-2b+c)(a-c)
1、已知关于x、y的方程组{y2-4x=y+2 y-mx=2 有一个实数解.求m
2、已知方程组{x2+y2-2x=0 kx-y-k=0
(1)求证:不论为何实数时,方程组总有两个不同的实数解
(2)设方程组两个不同的实数解为{x=a y=b {x=a' y=b'
求证:(a-a')2+(b-b')2是一个常数
3、已知三角形ABC的三边为a,b,c.方程x2+2(a+c-b)x+2ac-b2=0有两个相等的实数根
(1)求证:三角形ABC是等边三角形
(2)若方程2x2+2k(a+c)+2ack2+5k-6=o有两个不相等的实数根,求k
4、设a、b、c为实数.求证:(b-2a+c)2大于等于3(a-2b+c)(a-c)
▼优质解答
答案和解析
1.把2个方程联立消y,得:m2x2+4mx-4x-mx=0
m2x2+(3m-4)x=0
因为有一个实数解,所以△=(3m-4)2=0
得m=4/3.
2.(1)证明:先把2个方程联立消y,得:(k2+1)x2 -(2k2+2)x + k2=0
△=(2k2+2)2-4k2(k2+1)
=4k2+4>0恒成立(因为k2≥0,再+4就>0)
所以方程组总有2个不同的实数根
(2)证明:由(1)问中得到的方程(k2+1)x2 -(2k2+2)x + k2=0,
用韦达定理,求x1+x2=(2k2+2)/(k2+1)=2
x1*x2=(k2)/(k2+1)
(a-a')2其实就是(x1-x2)2=(x1+x2)2-4x1x2=4/(k2+1)
(过程自己化简)
原题有方程:kx-y-k=0,y=kx-k
y1+y2=kx1-k+kx2-k=k(x1+x2)-2k=2k-2k=0 (前面已算出x1+x2=2)
y1*y2=k2(x1-1)(x2-1)=k2(x1x2-(x1+x2)+1)=(-k2)/(k2+1)
(b-b')2其实就是(y1-y2)2=(y1+y2)2-4y1y2=0-(-4k2)/(k2+1)
=(4k2)/(k2+1)
(a-a')2+(b-b')2=4/(k2+1) + (4k2)/(k2+1) = 4
3.(1)求证:因为方程x2+2(a+c-b)x+2ac-b2=0有两个相等的实数根
所以有△=4a2-8ab+4c2-8bc+4b2+4b2=4(a-b)2 +4(b-c)2=0
得:a=b,b=c
所以a=b=c
所以三角形ABC是等边三角形
(2)因为2x2+2k(a+c)+2ack2+5k-6=o有2个不相等的实数根
令a=c=1,得2x2+4k+2k2+5k-6=0
所以有△=0-8(2k2+9k-6)>0
化简得:2k2+9k-6
m2x2+(3m-4)x=0
因为有一个实数解,所以△=(3m-4)2=0
得m=4/3.
2.(1)证明:先把2个方程联立消y,得:(k2+1)x2 -(2k2+2)x + k2=0
△=(2k2+2)2-4k2(k2+1)
=4k2+4>0恒成立(因为k2≥0,再+4就>0)
所以方程组总有2个不同的实数根
(2)证明:由(1)问中得到的方程(k2+1)x2 -(2k2+2)x + k2=0,
用韦达定理,求x1+x2=(2k2+2)/(k2+1)=2
x1*x2=(k2)/(k2+1)
(a-a')2其实就是(x1-x2)2=(x1+x2)2-4x1x2=4/(k2+1)
(过程自己化简)
原题有方程:kx-y-k=0,y=kx-k
y1+y2=kx1-k+kx2-k=k(x1+x2)-2k=2k-2k=0 (前面已算出x1+x2=2)
y1*y2=k2(x1-1)(x2-1)=k2(x1x2-(x1+x2)+1)=(-k2)/(k2+1)
(b-b')2其实就是(y1-y2)2=(y1+y2)2-4y1y2=0-(-4k2)/(k2+1)
=(4k2)/(k2+1)
(a-a')2+(b-b')2=4/(k2+1) + (4k2)/(k2+1) = 4
3.(1)求证:因为方程x2+2(a+c-b)x+2ac-b2=0有两个相等的实数根
所以有△=4a2-8ab+4c2-8bc+4b2+4b2=4(a-b)2 +4(b-c)2=0
得:a=b,b=c
所以a=b=c
所以三角形ABC是等边三角形
(2)因为2x2+2k(a+c)+2ack2+5k-6=o有2个不相等的实数根
令a=c=1,得2x2+4k+2k2+5k-6=0
所以有△=0-8(2k2+9k-6)>0
化简得:2k2+9k-6
看了 初三上四组数学题.急!1、已...的网友还看了以下:
mathematica解偏微分方程数值解,用s=NDSolve[.],如何从s中提出数值解,或者这 2020-05-16 …
根据《行政处罚法》的规定,适用听证 程序的行政处罚有:A.责令停产停业B.吊销营业执照C.暂扣许可 2020-05-21 …
根据《行政处罚法》的规定,适用听证程序的行政处罚有: A.责令停产停业 B.吊销营业执照 2020-05-21 …
只要能够达到100%的逻辑覆盖率,就可以保证程序的正确性。( ) 2020-05-23 …
●在面向对象软件开发过程中,采用设计模式 (43) 。 (43) A.以复用成功的设计 B.以保证程 2020-05-26 …
在面向对象软件开发过程中,采用设计模式(48)。A.以减少设计过程创建的类的个数B.以保证程序的运行 2020-05-26 …
适用听证程序的统计违法案件,听证主持人应由统计行政机关指定的非本案调查人员担任。()A.正确B.错 2020-06-07 …
本案在省统计局作出处罚决定之前若启动听证程序的罚款金额是( )。A.省统计局拟作出5000元以上罚款 2020-06-07 …
《行政处罚法》对于有关听证程序的具体规定的描述不正确的是()。A.行政机关应当在听证的七日前,通知 2020-06-07 …
哥德巴赫猜想,孪生素数猜想的具体内容,并列出5个未被验证的数学猜想的具体内容拜托各位大神能用QB4. 2020-11-22 …