早教吧作业答案频道 -->数学-->
初三上四组数学题.急!1、已知关于x、y的方程组{y2-4x=y+2y-mx=2有一个实数解.求m2、已知方程组{x2+y2-2x=0kx-y-k=0(1)求证:不论为何实数时,方程组总有两个不同的实数解(2)设方程组两个
题目详情
初三上四组数学题.急!
1、已知关于x、y的方程组{y2-4x=y+2 y-mx=2 有一个实数解.求m
2、已知方程组{x2+y2-2x=0 kx-y-k=0
(1)求证:不论为何实数时,方程组总有两个不同的实数解
(2)设方程组两个不同的实数解为{x=a y=b {x=a' y=b'
求证:(a-a')2+(b-b')2是一个常数
3、已知三角形ABC的三边为a,b,c.方程x2+2(a+c-b)x+2ac-b2=0有两个相等的实数根
(1)求证:三角形ABC是等边三角形
(2)若方程2x2+2k(a+c)+2ack2+5k-6=o有两个不相等的实数根,求k
4、设a、b、c为实数.求证:(b-2a+c)2大于等于3(a-2b+c)(a-c)
1、已知关于x、y的方程组{y2-4x=y+2 y-mx=2 有一个实数解.求m
2、已知方程组{x2+y2-2x=0 kx-y-k=0
(1)求证:不论为何实数时,方程组总有两个不同的实数解
(2)设方程组两个不同的实数解为{x=a y=b {x=a' y=b'
求证:(a-a')2+(b-b')2是一个常数
3、已知三角形ABC的三边为a,b,c.方程x2+2(a+c-b)x+2ac-b2=0有两个相等的实数根
(1)求证:三角形ABC是等边三角形
(2)若方程2x2+2k(a+c)+2ack2+5k-6=o有两个不相等的实数根,求k
4、设a、b、c为实数.求证:(b-2a+c)2大于等于3(a-2b+c)(a-c)
▼优质解答
答案和解析
1.把2个方程联立消y,得:m2x2+4mx-4x-mx=0
m2x2+(3m-4)x=0
因为有一个实数解,所以△=(3m-4)2=0
得m=4/3.
2.(1)证明:先把2个方程联立消y,得:(k2+1)x2 -(2k2+2)x + k2=0
△=(2k2+2)2-4k2(k2+1)
=4k2+4>0恒成立(因为k2≥0,再+4就>0)
所以方程组总有2个不同的实数根
(2)证明:由(1)问中得到的方程(k2+1)x2 -(2k2+2)x + k2=0,
用韦达定理,求x1+x2=(2k2+2)/(k2+1)=2
x1*x2=(k2)/(k2+1)
(a-a')2其实就是(x1-x2)2=(x1+x2)2-4x1x2=4/(k2+1)
(过程自己化简)
原题有方程:kx-y-k=0,y=kx-k
y1+y2=kx1-k+kx2-k=k(x1+x2)-2k=2k-2k=0 (前面已算出x1+x2=2)
y1*y2=k2(x1-1)(x2-1)=k2(x1x2-(x1+x2)+1)=(-k2)/(k2+1)
(b-b')2其实就是(y1-y2)2=(y1+y2)2-4y1y2=0-(-4k2)/(k2+1)
=(4k2)/(k2+1)
(a-a')2+(b-b')2=4/(k2+1) + (4k2)/(k2+1) = 4
3.(1)求证:因为方程x2+2(a+c-b)x+2ac-b2=0有两个相等的实数根
所以有△=4a2-8ab+4c2-8bc+4b2+4b2=4(a-b)2 +4(b-c)2=0
得:a=b,b=c
所以a=b=c
所以三角形ABC是等边三角形
(2)因为2x2+2k(a+c)+2ack2+5k-6=o有2个不相等的实数根
令a=c=1,得2x2+4k+2k2+5k-6=0
所以有△=0-8(2k2+9k-6)>0
化简得:2k2+9k-6
m2x2+(3m-4)x=0
因为有一个实数解,所以△=(3m-4)2=0
得m=4/3.
2.(1)证明:先把2个方程联立消y,得:(k2+1)x2 -(2k2+2)x + k2=0
△=(2k2+2)2-4k2(k2+1)
=4k2+4>0恒成立(因为k2≥0,再+4就>0)
所以方程组总有2个不同的实数根
(2)证明:由(1)问中得到的方程(k2+1)x2 -(2k2+2)x + k2=0,
用韦达定理,求x1+x2=(2k2+2)/(k2+1)=2
x1*x2=(k2)/(k2+1)
(a-a')2其实就是(x1-x2)2=(x1+x2)2-4x1x2=4/(k2+1)
(过程自己化简)
原题有方程:kx-y-k=0,y=kx-k
y1+y2=kx1-k+kx2-k=k(x1+x2)-2k=2k-2k=0 (前面已算出x1+x2=2)
y1*y2=k2(x1-1)(x2-1)=k2(x1x2-(x1+x2)+1)=(-k2)/(k2+1)
(b-b')2其实就是(y1-y2)2=(y1+y2)2-4y1y2=0-(-4k2)/(k2+1)
=(4k2)/(k2+1)
(a-a')2+(b-b')2=4/(k2+1) + (4k2)/(k2+1) = 4
3.(1)求证:因为方程x2+2(a+c-b)x+2ac-b2=0有两个相等的实数根
所以有△=4a2-8ab+4c2-8bc+4b2+4b2=4(a-b)2 +4(b-c)2=0
得:a=b,b=c
所以a=b=c
所以三角形ABC是等边三角形
(2)因为2x2+2k(a+c)+2ack2+5k-6=o有2个不相等的实数根
令a=c=1,得2x2+4k+2k2+5k-6=0
所以有△=0-8(2k2+9k-6)>0
化简得:2k2+9k-6
看了 初三上四组数学题.急!1、已...的网友还看了以下:
已知M=x|log2x^2-x=1已知M={x|log2(x^2-x)=1},N={x|2^(2x 2020-05-13 …
已知函数fx的定义域为R,对任意实数x,y满足f(x+y)=f(x)f(y)且f(x)>0,f(2 2020-05-13 …
【急求解解析几何】已知曲线c的方程为kx^2+(4-k)y^2=k+1.已知曲线c的方程为kx^2 2020-05-16 …
阅读第(1)题的解题过程,再做第(2)题:(1)已知x+x^-1=3,求x^3+x^-3的值,因为 2020-05-17 …
先阅读(1)题的解答过程,然后解第(2)题(1)已知多项式2x^3-x^2+m有一个因式是2x+1 2020-06-14 …
(2014•拱墅区二模)以下说法:①关于x的方程x+1x=c+1c的解是x=c(c≠0);②方程组 2020-07-08 …
两道有关二元一次方程组1.已知3ax+2by=1,2ax-6by=19的解是x=4,y=5,求ax 2020-07-25 …
两道二元一次方程组.1.已知方程组{x+2y=m,x-y=-1的解中x,y的和是1,求m值.2.在 2020-07-25 …
体育课上,全班同学分组参加活动.原计划8人一组,后来重新编组,每组12人,这样比原计划减少2组(已知 2020-11-22 …
概率相关的问题,好能用贝叶斯定理来回答问题大致描述如下:你要不是组1,要不就是组2.组1的人比较牛, 2021-01-04 …