早教吧作业答案频道 -->数学-->
将一个骰子连续抛掷三次,依次得到三个点数既不成等差数列也不成等比数列的概率为()A.4954B.95108C.101108D.554
题目详情
| 49 |
| 54 |
B.
| 95 |
| 108 |
C.
| 101 |
| 108 |
D.
| 5 |
| 54 |
| 49 |
| 54 |
| 95 |
| 108 |
C.
| 101 |
| 108 |
D.
| 5 |
| 54 |
| 95 |
| 108 |
| 101 |
| 108 |
D.
| 5 |
| 54 |
| 101 |
| 108 |
| 5 |
| 54 |
| 5 |
| 54 |
▼优质解答
答案和解析
将一骰子扔一次有6种不同的结果,则将一骰子连续抛掷三次有633=216个结果,
其中依次得到三个点数等差数列有三类:
(1)公差为0,即三个点数相等的情况有6种,
(2)公差为1或-1,三个点数依次为1、2、3,3、2、1,2、3、4,4、3、2,3、4、5,5、4、3,4、5、6,6、5、4,有8种情况;
(3)公差为2或-2,有1、3、5,5、3、1,2、4、6,6、4、2,有4种情况;
依次得到三个点数为等比数列的有两类:
(1)公比为1,即三个点数相等的情况有6种,
(2)公比为2,有1、2、4、4、2、1,有种情况,
则依次得到三个点数为等差数列或等比数列的有6+8+4+2=20个结果,
则依次得到三个点数既不成等差数列也不成等比数列的情况有216-20=196,
则其概率为
=
;
故选A.
196 196 196216 216 216=
;
故选A.
49 49 4954 54 54;
故选A.
其中依次得到三个点数等差数列有三类:
(1)公差为0,即三个点数相等的情况有6种,
(2)公差为1或-1,三个点数依次为1、2、3,3、2、1,2、3、4,4、3、2,3、4、5,5、4、3,4、5、6,6、5、4,有8种情况;
(3)公差为2或-2,有1、3、5,5、3、1,2、4、6,6、4、2,有4种情况;
依次得到三个点数为等比数列的有两类:
(1)公比为1,即三个点数相等的情况有6种,
(2)公比为2,有1、2、4、4、2、1,有种情况,
则依次得到三个点数为等差数列或等比数列的有6+8+4+2=20个结果,
则依次得到三个点数既不成等差数列也不成等比数列的情况有216-20=196,
则其概率为
| 196 |
| 216 |
| 49 |
| 54 |
故选A.
| 196 |
| 216 |
| 49 |
| 54 |
故选A.
| 49 |
| 54 |
故选A.
看了 将一个骰子连续抛掷三次,依次...的网友还看了以下:
有三个骰子,其中红色骰子上2、4、9点各两面;绿色骰子上3、5、7点各两面;蓝色骰子上1、6、8点 2020-06-18 …
求教一个概率的基本问题有五个骰子,投完后,五个同时出现4点那一面的概率是多少?有五个骰子,投完后, 2020-06-24 …
街头的骰子游戏的概率问题三个骰子让你自己摇,自己把钱押在一二三四五六,六个空格上.例如你押在一上, 2020-06-25 …
3个相同的骰子,每个骰子六面,分别是象,猪,马,兔,鸡,鱼.三个骰子一起滚下,出现三个动物相同,两 2020-06-27 …
给猴子分桃子,比如有两只猴子个分到五个桃子,那么其它猴子个分三个桃子的话还余九个桃子;那么给四个猴 2020-07-12 …
请同学制作这样的三个骰子,要求每个骰子只有红、黄、绿三种颜色,它们分别符合下面不同要求.(1)第一 2020-07-13 …
三个骰子同时抛掷,出现三个点数的和小于等于9的概率与大于等于10的概率相同吗?说错了,应该是:三个 2020-07-21 …
有同样大小的三个立方体骰子,每个骰子的展开图如图1所示,如果把每个骰子点数是4的一面放在桌子上,那么 2020-11-11 …
投掷三个骰子,求三个骰子中有两个骰子点数和为7的概率 2020-11-18 …
三个骰子,其中一个是1,和不小于10点掷三个骰子,已知第一粒骰子掷出的1(事件B),问掷出点数之和不 2020-11-25 …