早教吧作业答案频道 -->数学-->
已知|ab-2|与|a-1|互为相反数求值1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+.1/(a+2006)(b+2006)已知|ab-2|与|a-1|互为相反数求值1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+.1/(a+2006)(b+2006)
题目详情
已知|ab-2|与|a-1|互为相反数 求值 1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+.1/(a+2006)(b+2006)
已知|ab-2|与|a-1|互为相反数求值 1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+.1/(a+2006)(b+2006)
已知|ab-2|与|a-1|互为相反数求值 1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+.1/(a+2006)(b+2006)
▼优质解答
答案和解析
绝对值项恒非负,只有0的相反数仍为非负数.
ab-2=0
a-1=0
解得a=1 b=2
b=a+1
1/(ab)+1/[(a+1)(b+1)]+1/[(a+2)(b+2)]+...+1/[(a+2006)(b+2006)]
=1/[a(a+1)]+1/[(a+1)(a+2)]+1/[(a+2)(a+3)]+...+1/[(a+2006)(a+2007)]
=1/a -1/(a+1)+1/(a+1)-1/(a+2)+1/(a+2)-1/(a+3)+...+1/(a+2006)-1/(a+2007)
=1/a -1/(a+2007)
=1/1 -1/2008
=2007/2008
ab-2=0
a-1=0
解得a=1 b=2
b=a+1
1/(ab)+1/[(a+1)(b+1)]+1/[(a+2)(b+2)]+...+1/[(a+2006)(b+2006)]
=1/[a(a+1)]+1/[(a+1)(a+2)]+1/[(a+2)(a+3)]+...+1/[(a+2006)(a+2007)]
=1/a -1/(a+1)+1/(a+1)-1/(a+2)+1/(a+2)-1/(a+3)+...+1/(a+2006)-1/(a+2007)
=1/a -1/(a+2007)
=1/1 -1/2008
=2007/2008
看了 已知|ab-2|与|a-1|...的网友还看了以下:
设a>b>0,则a^2+(1/ab)+[1/a(a-b)]的最小值 2020-04-05 …
设a>b>0,则a²+1/ab+1/a(a-b)的最小值是 2020-04-05 …
设a>b>0 求a^2+1/(ab)+1/[a(a-b)]的最小值 2020-04-05 …
a>b>0,则a平方+1/ab+1/a*(a-b)最小值a平方 + 1/ab + 1/a*(a-b 2020-04-05 …
设a>b>0则a^2+1/ab+1/a(a-b)的最小值是?为什么a²+1/b(a-b)≥a²+4 2020-04-05 …
已知√(a-1)+(ab-2)^2=0,求1/ab+1/(a+1)(a-1)+A+1(a+2010 2020-04-27 …
一.若三角形ABC的三个内角满足sinA:sinB:sinC=5:11:13.则三角形.A一定是锐 2020-07-18 …
线性代数问题1.设A.B均为n阶方阵,若|A+B|不等于0,且AB=BA,则(A-B)(A+B)* 2020-07-20 …
问几道数学题1.下列4个等式中错误的是()A1-a-b+ab=(1-a)(1-b)B1+a+b+ab 2020-12-19 …
两正数x,y,满足x+y=1则(x+1/x)(y+1/y)的最小值a>b>0,则a^2+1/ab+1 2020-12-23 …