早教吧作业答案频道 -->数学-->
已知f(x)=asinwx+bcoswx(w>0)的最小正周期为π,且当x=π/12时,有最大值4,求a,b,w的值及单调递增区间
题目详情
已知f(x)=asinwx+bcoswx(w>0)的最小正周期为π,且当x=π/12时,有最大值4,求a,b,w的值及单调递增区间
▼优质解答
答案和解析
答:
f(x)=asinwx+bcoswx
=√(a²+b²) { [a/√(a²+b²)]sinwx+[b/√(a²+b²)]coswx }
=√(a²+b²) sin(wx+β)
上述过程就是辅助角公式的推导过程:cosβ=a/√(a²+b²),sinβ=b/√(a²+b²)
最小正周期T=2π/w=π,w=2
x=π/12时有最大值4,则:
f(π/12)=√(a²+b²) sin(2*π/12+β)=4
所以:
√(a²+b²)=4
sin(π/6+β)=1
所以:
a²+b²=16
π/6+β=π/2
β=π/3
cosβ=a/√(a²+b²)=cosπ/3=1/2
所以:a=2,b=2√3
所以:f(x)=4sin(2x+π/3)
单调增区间满足:2kπ-π/2
f(x)=asinwx+bcoswx
=√(a²+b²) { [a/√(a²+b²)]sinwx+[b/√(a²+b²)]coswx }
=√(a²+b²) sin(wx+β)
上述过程就是辅助角公式的推导过程:cosβ=a/√(a²+b²),sinβ=b/√(a²+b²)
最小正周期T=2π/w=π,w=2
x=π/12时有最大值4,则:
f(π/12)=√(a²+b²) sin(2*π/12+β)=4
所以:
√(a²+b²)=4
sin(π/6+β)=1
所以:
a²+b²=16
π/6+β=π/2
β=π/3
cosβ=a/√(a²+b²)=cosπ/3=1/2
所以:a=2,b=2√3
所以:f(x)=4sin(2x+π/3)
单调增区间满足:2kπ-π/2
看了 已知f(x)=asinwx+...的网友还看了以下:
在梯形面积公式s=1/2(a+b)h中已知s=30,a=6,h=4,求b已知s=60,b=4,h= 2020-05-13 …
已知两圆c1:x²+y²-4x+2y=0圆c2:x²+y²-2y-4=0的交点为AB,(1)求A已 2020-07-09 …
已知函数f(x)=x³-ax²-3x,(1)若f(x)在区间[1,正无穷)上是增函数,求a已知函数 2020-07-18 …
已知a为整数关于X的方程a²X=20的根是质数需满足绝对值ax-7大于a方求a已知a为整数关于X的 2020-07-30 …
已知F(x)=x(-1/2),在点(a,f)的切线方程交横纵轴的于两点,与原点围成的三角形面积S= 2020-07-30 …
A=(aij)3X3满足aij=Aij,其中Aij是aij的代数余子式,且aij不为0,求|A|我 2020-08-03 …
已知e1、e2是夹角为120°的两个单位向量,a=3e1-2e2,b=2e1-3e2.1.求a.已知 2020-10-31 …
已知|a|=3,b=(-2,3).(1)若a⊥b,求a;(2)若a‖b,求a已知a=(3,4),则与 2020-11-02 …
知道A*和矩阵A怎么求A可逆阵通过矩阵A求出A的伴随矩阵A*再怎么求A^-1知道A*和矩阵A怎么求A 2021-02-05 …
已知abc分别为三角形ABC三个内角ABC的对边,c=√3acosC-ccosA(1求)A(已知ab 2021-02-07 …