早教吧作业答案频道 -->数学-->
数列{an}前n项和为Sn,对任意n属于R,都有an>0且Sn=[(an-1)(an+2)]/2,求an通项公式
题目详情
数列{an}前n项和为Sn,对任意n属于R,都有an>0且Sn=[(an-1)(an+2)]/2,求an通项公式
▼优质解答
答案和解析
1、当n=1时,有:
a1=[(a1-1)(a1+2)]/2
得:a1=2
2、当n≥2时,an=Sn-S(n-1),则:
an=[(an-1)(an+2)]/2-[a(n-1)-1]×[a(n-1)+2]/2
2an=[(an)²+an-2]-[a(n-1)²+a(n-1)-2]
[an²-a(n-1)²]-[an+a(n-1)]=0
[an+a(n-1)][an-a(n-1)-1]=0
因an>0,则:an-a(n-1)=1=常数,则:
{an}是以a1=2为首项、以d=1为公差的等差数列,则an=n+1
a1=[(a1-1)(a1+2)]/2
得:a1=2
2、当n≥2时,an=Sn-S(n-1),则:
an=[(an-1)(an+2)]/2-[a(n-1)-1]×[a(n-1)+2]/2
2an=[(an)²+an-2]-[a(n-1)²+a(n-1)-2]
[an²-a(n-1)²]-[an+a(n-1)]=0
[an+a(n-1)][an-a(n-1)-1]=0
因an>0,则:an-a(n-1)=1=常数,则:
{an}是以a1=2为首项、以d=1为公差的等差数列,则an=n+1
看了 数列{an}前n项和为Sn,...的网友还看了以下: