早教吧作业答案频道 -->数学-->
如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D在同一条直线上
题目详情
如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合.(在图3至图6中统一用F表示)

小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.
(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F重合,请你求出平移的距离;
(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;
(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH﹦DH.


小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.
(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F重合,请你求出平移的距离;
(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;
(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH﹦DH.

▼优质解答
答案和解析
(1)图形平移的距离就是线段BF的长,
又∵在Rt△ABC中,斜边长为10cm,∠BAC=30°,
∴BF=5cm,
∴平移的距离为5cm;
(2)∵∠A1FA=30°,
∴∠GFD=60°,∠D=30°,
∴∠FGD=90°,
在Rt△EFD中,ED=10cm,
∵FD=5
,
∴FG=
cm;
(3)△AHE与△DHB1中,
∵∠FAB1=∠EDF=30°,
∵FD=FA,EF=FB=FB1,
∴FD-FB1=FA-FE,即AE=DB1,
又∵∠AHE=∠DHB1,
∴△AHE≌△DHB1(AAS),
∴AH=DH.
又∵在Rt△ABC中,斜边长为10cm,∠BAC=30°,
∴BF=5cm,
∴平移的距离为5cm;
(2)∵∠A1FA=30°,
∴∠GFD=60°,∠D=30°,
∴∠FGD=90°,
在Rt△EFD中,ED=10cm,
∵FD=5
3 |
∴FG=
5
| ||
2 |
(3)△AHE与△DHB1中,
∵∠FAB1=∠EDF=30°,
∵FD=FA,EF=FB=FB1,
∴FD-FB1=FA-FE,即AE=DB1,
又∵∠AHE=∠DHB1,
∴△AHE≌△DHB1(AAS),
∴AH=DH.
看了 如图1,小明将一张矩形纸片沿...的网友还看了以下:
在平面直角坐标系中,对于平面内任何一点(a,b),若规定以下三种变换:①f(a,b)=(-a,b) 2020-04-26 …
已知f(x)是R上的奇函数,f(1)=-2,f(3)=1,则ABCD选项选哪个?已知f(x)是R上 2020-04-27 …
已知函数f(x)=x2/1+x2(1)求f(2)+f(1/2),f(3)+f(1/3)的值(2)求 2020-05-12 …
定义在R上的奇函数f(x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有(x2-x1)( 2020-05-22 …
试一试:已知三角函数值,求锐角(精确到1″)(1)已知Sinα=0.3257,求锐角α.(2)已知 2020-05-22 …
高一数列难题等比数列an中.a1>1.q>0.且f(n)=log2an.f(1)+f(3)+f(5 2020-06-02 …
要高考了,问一下,f(a+x)=f(a-x)等价于f(2a-x)=f(x),可以推出T=2a和对称 2020-06-10 …
数列题!f(x,y)对所有实数x,y都满足:f(0,y)=y+1,f(x+1,0)=f(x,1), 2020-06-12 …
几道高中函数题(求详解)1.已知函数f(X)=ax²+bx+c满足f(1)=f(4),则()A.f 2020-07-05 …
f(3)=4,g(3)=2,f`(3)=-5,g`(3)=6那么(f+g)`(3)=?(fg)`( 2020-07-09 …