早教吧作业答案频道 -->数学-->
已知二次函数y=ax^2+(b+1)x+(b-1),若存在x0∈R,是关于x的方程ax^2+(b+1)x+(b-1)=x成立,则称x0为该二次函数的不动点.若对任意实数b,该二次函数恒有两个相异的不动点,求实数a的取值范围
题目详情
已知二次函数y=ax^2+(b+1)x+(b-1),若存在x0∈R,是关于x的方程ax^2+(b+1)x+(b-1)=x成立,则称x0为该二次
函数的不动点.若对任意实数b,该二次函数恒有两个相异的不动点,求实数a的取值范围
函数的不动点.若对任意实数b,该二次函数恒有两个相异的不动点,求实数a的取值范围
▼优质解答
答案和解析
对任意实数b,该二次函数恒有两个相异的不动点
即方程ax^2+(b+1)x+(b-1)=x恒有2个不等的实数根
也就是对于方程ax^2+bx+(b-1)=0
△=b^2-4a(b-1)>0对一切实数b成立
整理有4a(b-1)<b^2
将b分类
i)b-1>0,a<b^2/4(b-1)
令b-1=t,则不等式右侧化为(t+1/t+2)/4
因为t>0,由均值不等式(基本不等式2)可知
t+1/t+2≥2+2=4,所以b^2/4(b-1)≥1
又a<b^2/4(b-1)对一切b-1>0成立,所以a要小于b^2/4(b-1)最小值1
∴b-1>0,a<1
ii)b-1=0,b=1
得到恒等式0<1
∴b-1=0,a取一切实数
iii)b-1<0,a>b^2/4(b-1)
当b-1<0时,b^2/4(b-1)≤-1(原因略,参考均值不等式/双钩函数)
又a>b^2/4(b-1)对一切b-1<0成立,所以a要大于b^2/4(b-1)最大值-1
∴b-1<0,a>1
综上,将三种情况合并,可知对任意实数b,该二次函数恒有两个相异的不动点,a的取值范围是(-1,1)
即方程ax^2+(b+1)x+(b-1)=x恒有2个不等的实数根
也就是对于方程ax^2+bx+(b-1)=0
△=b^2-4a(b-1)>0对一切实数b成立
整理有4a(b-1)<b^2
将b分类
i)b-1>0,a<b^2/4(b-1)
令b-1=t,则不等式右侧化为(t+1/t+2)/4
因为t>0,由均值不等式(基本不等式2)可知
t+1/t+2≥2+2=4,所以b^2/4(b-1)≥1
又a<b^2/4(b-1)对一切b-1>0成立,所以a要小于b^2/4(b-1)最小值1
∴b-1>0,a<1
ii)b-1=0,b=1
得到恒等式0<1
∴b-1=0,a取一切实数
iii)b-1<0,a>b^2/4(b-1)
当b-1<0时,b^2/4(b-1)≤-1(原因略,参考均值不等式/双钩函数)
又a>b^2/4(b-1)对一切b-1<0成立,所以a要大于b^2/4(b-1)最大值-1
∴b-1<0,a>1
综上,将三种情况合并,可知对任意实数b,该二次函数恒有两个相异的不动点,a的取值范围是(-1,1)
看了 已知二次函数y=ax^2+(...的网友还看了以下:
设集合A={a,a2,ab},B={1,a,b}若A=B求a,b的值 2020-04-05 …
数学上一般用f(x)来表示关于x的函数,若存在x∈R,使f(x)=x则称x为f(x)的不动点.已知 2020-05-13 …
1.下列说法中正确的是()A.若小杰比小明重1/5,则小明比小杰轻1/5 B.若小明比原来轻了1/ 2020-05-16 …
已知二次函数y=ax^2+(b+1)x+(b-1),若存在x0∈R,是关于x的方程ax^2+(b+ 2020-06-02 …
已知a,b为正数,求证)若√a+1>√b,则对于任何大于1的正数x,恒有ax+x/(x-1)>b( 2020-06-12 …
已知函数f(x)=ax+bx(a>0,b>0,a≠1,b≠1).(1)设a=2,b=12.①求方程 2020-07-26 …
已知函数f(x)=x+ax+b(a、b为常数)(1)若b=1,解不等式f(x-1)<0;(2)若a 2020-07-26 …
已知函数f(x)=(1+ln(x+1))/x,当x>0时,f(x)>k/(x+1)恒成立,求正整数k 2020-10-31 …
AB两物体的质量之比m:m'=3:2,原来静止在平板车C上,AB间有一根被压缩的轻弹簧,地面光滑,当 2020-12-17 …
Ⅰ.恒温、恒压下,在一个可变容积的容器中发生如下反应:A(g)+B(g)⇌C(g)(1)若开始时放入 2020-12-22 …