早教吧作业答案频道 -->数学-->
定义在R上的函数f(x)对任意a,b∈R都有f(a+b)=f(a)+f(b)+k(k为常数).(I)判断k为何值时,f(x)为奇函数,并证明;(II)设k=-1,f(x)是R上的增函数,且f(4)=5,若不等式f(mx2
题目详情
定义在R上的函数f(x)对任意a,b∈R都有f(a+b)=f(a)+f(b)+k(k为常数).
(I)判断k为何值时,f(x)为奇函数,并证明;
(II)设k=-1,f(x)是R上的增函数,且f(4)=5,若不等式f(mx2-2mx+3)>3对任意x∈R恒成立,求实数m的取值范围.
(I)判断k为何值时,f(x)为奇函数,并证明;
(II)设k=-1,f(x)是R上的增函数,且f(4)=5,若不等式f(mx2-2mx+3)>3对任意x∈R恒成立,求实数m的取值范围.
▼优质解答
答案和解析
(Ⅰ)若f(x)在R上为奇函数,则f(0)=0,
∵函数f(x)对任意a,b∈R都有f(a+b)=f(a)+f(b)+k,
∴令a=b=0,则f(0+0)=f(0)+f(0)+k,
∴k=0,
下证明函数是奇函数
∵f(a+b)=f(a)+f(b),
∴令a=x,b=-x,则f(x-x)=f(x)+f(-x),
又f(0)=0,
∴0=f(x)+f(-x),
∴f(-x)=-f(x)对任意x∈R成立,
∴f(x)为奇函数;
(Ⅱ)∵k=-1,
∴f(a+b)=f(a)+f(b)-1,
∴f(4)=f(2+2)=f(2)+f(2)-1=5,即2f(2)-1=5,
∴f(2)=3,
∵不等式f(mx2-2mx+3)>3对任意x∈R恒成立,
∴f(mx2-2mx+3)>f(2)对任意x∈R恒成立,
又∵f(x)是R上的增函数,
∴mx2-2mx+3>2对任意x∈R恒成立,
∴mx2-2mx+1>0对任意x∈R恒成立,
①当m=0时,1>0对x∈R恒成立,
∴m=0符合题意;
②当m≠0时,则有
,即
,
∴0<m<1,
∴实数m的取值范围为0<m<1.
综合①②可得,实数m的取值范围是[0,1).
∵函数f(x)对任意a,b∈R都有f(a+b)=f(a)+f(b)+k,
∴令a=b=0,则f(0+0)=f(0)+f(0)+k,
∴k=0,
下证明函数是奇函数
∵f(a+b)=f(a)+f(b),
∴令a=x,b=-x,则f(x-x)=f(x)+f(-x),
又f(0)=0,
∴0=f(x)+f(-x),
∴f(-x)=-f(x)对任意x∈R成立,
∴f(x)为奇函数;
(Ⅱ)∵k=-1,
∴f(a+b)=f(a)+f(b)-1,
∴f(4)=f(2+2)=f(2)+f(2)-1=5,即2f(2)-1=5,
∴f(2)=3,
∵不等式f(mx2-2mx+3)>3对任意x∈R恒成立,
∴f(mx2-2mx+3)>f(2)对任意x∈R恒成立,
又∵f(x)是R上的增函数,
∴mx2-2mx+3>2对任意x∈R恒成立,
∴mx2-2mx+1>0对任意x∈R恒成立,
①当m=0时,1>0对x∈R恒成立,
∴m=0符合题意;
②当m≠0时,则有
|
|
∴0<m<1,
∴实数m的取值范围为0<m<1.
综合①②可得,实数m的取值范围是[0,1).
看了 定义在R上的函数f(x)对任...的网友还看了以下:
设A={x|x=2^a乘3^被他,a,被他属于Z且a大于等于0,被他大于等于0},B={x|1小于 2020-04-06 …
如图,D,E分别是三角形ABC的边BC和AB上的点,且三角形ABD与三角形ACD的周长相等,三j角 2020-05-16 …
已知a的m次方等于5,a的n次方等于125,求a的(m+n)次方 2020-05-20 …
设各项均为正数的数列{an}和{bn}满足5^[an],5^[bn],5^[a(n+1)].设各项 2020-06-04 …
1.求证AE和BD的长;;2.若角BAC=90°三角形ABC的面积为S,求证AE*BD如图,D,E 2020-06-27 …
a的平方等于2,b的立方等于3,c的4次方等于4,5的5次方等于5,a、b、c、d、谁最大? 2020-07-30 …
设集合A={x|x的平方-3x-4大于0},B={x|x的平方-2x+b小于等于0}A交B={x| 2020-08-02 …
请问EX表格怎么设置当A格=1时B格等于5,A=2-3时B=6,A=4-5时B=7,A=6-7时B= 2020-11-01 …
先阅读第(1)题的解法,再解答第(2)题.(1)已知a、b是有理数,并且满足等式5-a3=2b+23 2020-12-13 …
C语言的题目写出下面赋值表达式运算后a的值,设原来a=12(1)a/=a+a(2)a%=(n%=2) 2020-12-31 …