早教吧作业答案频道 -->数学-->
定义在R上的函数f(x)对任意a,b∈R都有f(a+b)=f(a)+f(b)+k(k为常数).(I)判断k为何值时,f(x)为奇函数,并证明;(II)设k=-1,f(x)是R上的增函数,且f(4)=5,若不等式f(mx2
题目详情
定义在R上的函数f(x)对任意a,b∈R都有f(a+b)=f(a)+f(b)+k(k为常数).
(I)判断k为何值时,f(x)为奇函数,并证明;
(II)设k=-1,f(x)是R上的增函数,且f(4)=5,若不等式f(mx2-2mx+3)>3对任意x∈R恒成立,求实数m的取值范围.
(I)判断k为何值时,f(x)为奇函数,并证明;
(II)设k=-1,f(x)是R上的增函数,且f(4)=5,若不等式f(mx2-2mx+3)>3对任意x∈R恒成立,求实数m的取值范围.
▼优质解答
答案和解析
(Ⅰ)若f(x)在R上为奇函数,则f(0)=0,
∵函数f(x)对任意a,b∈R都有f(a+b)=f(a)+f(b)+k,
∴令a=b=0,则f(0+0)=f(0)+f(0)+k,
∴k=0,
下证明函数是奇函数
∵f(a+b)=f(a)+f(b),
∴令a=x,b=-x,则f(x-x)=f(x)+f(-x),
又f(0)=0,
∴0=f(x)+f(-x),
∴f(-x)=-f(x)对任意x∈R成立,
∴f(x)为奇函数;
(Ⅱ)∵k=-1,
∴f(a+b)=f(a)+f(b)-1,
∴f(4)=f(2+2)=f(2)+f(2)-1=5,即2f(2)-1=5,
∴f(2)=3,
∵不等式f(mx2-2mx+3)>3对任意x∈R恒成立,
∴f(mx2-2mx+3)>f(2)对任意x∈R恒成立,
又∵f(x)是R上的增函数,
∴mx2-2mx+3>2对任意x∈R恒成立,
∴mx2-2mx+1>0对任意x∈R恒成立,
①当m=0时,1>0对x∈R恒成立,
∴m=0符合题意;
②当m≠0时,则有
,即
,
∴0<m<1,
∴实数m的取值范围为0<m<1.
综合①②可得,实数m的取值范围是[0,1).
∵函数f(x)对任意a,b∈R都有f(a+b)=f(a)+f(b)+k,
∴令a=b=0,则f(0+0)=f(0)+f(0)+k,
∴k=0,
下证明函数是奇函数
∵f(a+b)=f(a)+f(b),
∴令a=x,b=-x,则f(x-x)=f(x)+f(-x),
又f(0)=0,
∴0=f(x)+f(-x),
∴f(-x)=-f(x)对任意x∈R成立,
∴f(x)为奇函数;
(Ⅱ)∵k=-1,
∴f(a+b)=f(a)+f(b)-1,
∴f(4)=f(2+2)=f(2)+f(2)-1=5,即2f(2)-1=5,
∴f(2)=3,
∵不等式f(mx2-2mx+3)>3对任意x∈R恒成立,
∴f(mx2-2mx+3)>f(2)对任意x∈R恒成立,
又∵f(x)是R上的增函数,
∴mx2-2mx+3>2对任意x∈R恒成立,
∴mx2-2mx+1>0对任意x∈R恒成立,
①当m=0时,1>0对x∈R恒成立,
∴m=0符合题意;
②当m≠0时,则有
|
|
∴0<m<1,
∴实数m的取值范围为0<m<1.
综合①②可得,实数m的取值范围是[0,1).
看了 定义在R上的函数f(x)对任...的网友还看了以下:
关于判断分段函数奇偶性的一些问题!求各位数学大神解答!我这里给出一个例子:-x²+x,x>0函数f( 2020-03-30 …
下列判断正确的是:A函数f(x)=x^2-2x/x-2是奇函数A函数f(x)=x^2-2x/x-2 2020-04-06 …
函数奇偶性判断 函数f[x]=x的平方+4是奇函数还是偶函数? 2020-05-16 …
已知函数f(X)=loga(x-1分之1-kx)(a>1)是奇函数,f(-x)+f(x)=01.求 2020-06-09 …
二次函数y=ax2+ax+2(a>0)在R上的最小值为f(a)(1)写出函数f(a)的解析式;(2 2020-07-11 …
高次函数如何让判断奇偶性?如y=f(x)=x7+x5+x3+x已知函数奇偶性,不同区间函数关系变化 2020-07-27 …
函数y=x+sinx是()A有界奇函数B无界偶函数C非奇非偶函数D无界奇函数怎样判断函数有界无界? 2020-07-31 …
函数奇偶性判断可以用代入法吗?设函数f(x)对于任意x,y属于R,都有f(x+y)=f(x)+f( 2020-08-01 …
判断函数奇偶性的题判断函数f(x)=㏒(1-x)/(1+x)在区间(-1,1)上的奇偶性 2020-08-01 …
TT怎么求值域怎么解不等式怎么判断函数奇偶性什么是幂函数怎TT怎么求值域怎么解不等式怎么判断函数奇偶 2021-01-22 …