早教吧作业答案频道 -->其他-->
(1)8.25+[2.85-(325-10.8×29)÷1114](2)14×(4.85÷518-3.6+6.15×335)+[5.5-1.75×(123+1921)](3)1+2+3+4+…+99+100+99+…+4+3+2+1.
题目详情
(1)8.25+[2.85-(3
-10.8×
)÷1
]
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
(3)1+2+3+4+…+99+100+99+…+4+3+2+1.3
-10.8×
)÷1
]
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
(3)1+2+3+4+…+99+100+99+…+4+3+2+1.
2 2 5 5
)÷1
]
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
(3)1+2+3+4+…+99+100+99+…+4+3+2+1.
2 2 9 9 1
]
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
(3)1+2+3+4+…+99+100+99+…+4+3+2+1.
1 1 14 14
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
(3)1+2+3+4+…+99+100+99+…+4+3+2+1.
1 1 4 4
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
(3)1+2+3+4+…+99+100+99+…+4+3+2+1.
5 5 18 18 3
)+[5.5-1.75×(1
+
)]
(3)1+2+3+4+…+99+100+99+…+4+3+2+1.
3 3 5 5 1
+
)]
(3)1+2+3+4+…+99+100+99+…+4+3+2+1.
2 2 3 3
)]
(3)1+2+3+4+…+99+100+99+…+4+3+2+1.
19 19 21 21
2 |
5 |
2 |
9 |
1 |
14 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
(3)1+2+3+4+…+99+100+99+…+4+3+2+1.3
2 |
5 |
2 |
9 |
1 |
14 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
(3)1+2+3+4+…+99+100+99+…+4+3+2+1.
2 |
5 |
2 |
9 |
1 |
14 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
(3)1+2+3+4+…+99+100+99+…+4+3+2+1.
2 |
9 |
1 |
14 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
(3)1+2+3+4+…+99+100+99+…+4+3+2+1.
1 |
14 |
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
(3)1+2+3+4+…+99+100+99+…+4+3+2+1.
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
(3)1+2+3+4+…+99+100+99+…+4+3+2+1.
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
(3)1+2+3+4+…+99+100+99+…+4+3+2+1.
3 |
5 |
2 |
3 |
19 |
21 |
(3)1+2+3+4+…+99+100+99+…+4+3+2+1.
2 |
3 |
19 |
21 |
(3)1+2+3+4+…+99+100+99+…+4+3+2+1.
19 |
21 |
▼优质解答
答案和解析
(1)8.25+[2.85-(3
-10.8×
)÷1
]
=
+[
-(
−
×
)×
],
=
+[
-(
-
)×
],
=
+[
−
],
=
+
,
=
.
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000. 3
2 2 25 5 5-10.8×
)÷1
]
=
+[
-(
−
×
)×
],
=
+[
-(
-
)×
],
=
+[
−
],
=
+
,
=
.
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
2 2 29 9 9)÷1
]
=
+[
-(
−
×
)×
],
=
+[
-(
-
)×
],
=
+[
−
],
=
+
,
=
.
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000. 1
1 1 114 14 14]
=
+[
-(
−
×
)×
],
=
+[
-(
-
)×
],
=
+[
−
],
=
+
,
=
.
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
33 33 338 8 8+[
-(
−
×
)×
],
=
+[
-(
-
)×
],
=
+[
−
],
=
+
,
=
.
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
57 57 5720 20 20-(
−
×
)×
],
=
+[
-(
-
)×
],
=
+[
−
],
=
+
,
=
.
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
17 17 175 5 5−
×
)×
],
=
+[
-(
-
)×
],
=
+[
−
],
=
+
,
=
.
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
54 54 545 5 5×
2 2 29 9 9)×
],
=
+[
-(
-
)×
],
=
+[
−
],
=
+
,
=
.
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
14 14 1415 15 15],
=
+[
-(
-
)×
],
=
+[
−
],
=
+
,
=
.
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
33 33 338 8 8+[
-(
-
)×
],
=
+[
−
],
=
+
,
=
.
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
57 57 5720 20 20-(
-
)×
],
=
+[
−
],
=
+
,
=
.
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
17 17 175 5 5-
)×
],
=
+[
−
],
=
+
,
=
.
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
12 12 125 5 5)×
],
=
+[
−
],
=
+
,
=
.
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
14 14 1415 15 15],
=
+[
−
],
=
+
,
=
.
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
33 33 338 8 8+[
−
],
=
+
,
=
.
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
57 57 5720 20 20−
14 14 1415 15 15],
=
+
,
=
.
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
33 33 338 8 8+
,
=
.
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
23 23 2312 12 12,
=
.
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
145 145 14524 24 24.
(2)
×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
1 1 14 4 4×(4.85÷
-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
5 5 518 18 18-3.6+6.15×3
)+[5.5-1.75×(1
+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000. 3
3 3 35 5 5)+[5.5-1.75×(1
+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000. 1
2 2 23 3 3+
)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
19 19 1921 21 21)]
=
×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
1 1 14 4 4×(
×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
97 97 9720 20 20×
-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
18 18 185 5 5-
+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
18 18 185 5 5+
×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
123 123 12320 20 20×
)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
18 18 185 5 5)+[
-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
11 11 112 2 2-
×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
7 7 74 4 4×(
+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
5 5 53 3 3+
)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
19 19 1921 21 21)],
=
×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
1 1 14 4 4×[(
+
−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
97 97 9720 20 20+
123 123 12320 20 20−1)×
]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
18 18 185 5 5]+[
-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
11 11 112 2 2-
×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
7 7 74 4 4×
],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
54 54 5421 21 21],
=
×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
1 1 14 4 4×[10×
]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
18 18 185 5 5]+[
−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
11 11 112 2 2−
],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000. −
27 27 276 6 6],
=
×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
1 1 14 4 4×36+1,
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
2 |
5 |
2 |
9 |
1 |
14 |
=
33 |
8 |
57 |
20 |
17 |
5 |
54 |
5 |
2 |
9 |
14 |
15 |
=
33 |
8 |
57 |
20 |
17 |
5 |
12 |
5 |
14 |
15 |
=
33 |
8 |
57 |
20 |
14 |
15 |
=
33 |
8 |
23 |
12 |
=
145 |
24 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000. 3
2 |
5 |
2 |
9 |
1 |
14 |
=
33 |
8 |
57 |
20 |
17 |
5 |
54 |
5 |
2 |
9 |
14 |
15 |
=
33 |
8 |
57 |
20 |
17 |
5 |
12 |
5 |
14 |
15 |
=
33 |
8 |
57 |
20 |
14 |
15 |
=
33 |
8 |
23 |
12 |
=
145 |
24 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
2 |
9 |
1 |
14 |
=
33 |
8 |
57 |
20 |
17 |
5 |
54 |
5 |
2 |
9 |
14 |
15 |
=
33 |
8 |
57 |
20 |
17 |
5 |
12 |
5 |
14 |
15 |
=
33 |
8 |
57 |
20 |
14 |
15 |
=
33 |
8 |
23 |
12 |
=
145 |
24 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000. 1
1 |
14 |
=
33 |
8 |
57 |
20 |
17 |
5 |
54 |
5 |
2 |
9 |
14 |
15 |
=
33 |
8 |
57 |
20 |
17 |
5 |
12 |
5 |
14 |
15 |
=
33 |
8 |
57 |
20 |
14 |
15 |
=
33 |
8 |
23 |
12 |
=
145 |
24 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
33 |
8 |
57 |
20 |
17 |
5 |
54 |
5 |
2 |
9 |
14 |
15 |
=
33 |
8 |
57 |
20 |
17 |
5 |
12 |
5 |
14 |
15 |
=
33 |
8 |
57 |
20 |
14 |
15 |
=
33 |
8 |
23 |
12 |
=
145 |
24 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
57 |
20 |
17 |
5 |
54 |
5 |
2 |
9 |
14 |
15 |
=
33 |
8 |
57 |
20 |
17 |
5 |
12 |
5 |
14 |
15 |
=
33 |
8 |
57 |
20 |
14 |
15 |
=
33 |
8 |
23 |
12 |
=
145 |
24 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
17 |
5 |
54 |
5 |
2 |
9 |
14 |
15 |
=
33 |
8 |
57 |
20 |
17 |
5 |
12 |
5 |
14 |
15 |
=
33 |
8 |
57 |
20 |
14 |
15 |
=
33 |
8 |
23 |
12 |
=
145 |
24 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
54 |
5 |
2 |
9 |
14 |
15 |
=
33 |
8 |
57 |
20 |
17 |
5 |
12 |
5 |
14 |
15 |
=
33 |
8 |
57 |
20 |
14 |
15 |
=
33 |
8 |
23 |
12 |
=
145 |
24 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
14 |
15 |
=
33 |
8 |
57 |
20 |
17 |
5 |
12 |
5 |
14 |
15 |
=
33 |
8 |
57 |
20 |
14 |
15 |
=
33 |
8 |
23 |
12 |
=
145 |
24 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
33 |
8 |
57 |
20 |
17 |
5 |
12 |
5 |
14 |
15 |
=
33 |
8 |
57 |
20 |
14 |
15 |
=
33 |
8 |
23 |
12 |
=
145 |
24 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
57 |
20 |
17 |
5 |
12 |
5 |
14 |
15 |
=
33 |
8 |
57 |
20 |
14 |
15 |
=
33 |
8 |
23 |
12 |
=
145 |
24 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
17 |
5 |
12 |
5 |
14 |
15 |
=
33 |
8 |
57 |
20 |
14 |
15 |
=
33 |
8 |
23 |
12 |
=
145 |
24 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
12 |
5 |
14 |
15 |
=
33 |
8 |
57 |
20 |
14 |
15 |
=
33 |
8 |
23 |
12 |
=
145 |
24 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
14 |
15 |
=
33 |
8 |
57 |
20 |
14 |
15 |
=
33 |
8 |
23 |
12 |
=
145 |
24 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
33 |
8 |
57 |
20 |
14 |
15 |
=
33 |
8 |
23 |
12 |
=
145 |
24 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
57 |
20 |
14 |
15 |
=
33 |
8 |
23 |
12 |
=
145 |
24 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
33 |
8 |
23 |
12 |
=
145 |
24 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
23 |
12 |
=
145 |
24 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
145 |
24 |
(2)
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
1 |
4 |
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
5 |
18 |
3 |
5 |
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000. 3
3 |
5 |
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000. 1
2 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
19 |
21 |
=
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
1 |
4 |
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
97 |
20 |
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
18 |
5 |
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
18 |
5 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
18 |
5 |
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
11 |
2 |
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
7 |
4 |
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
5 |
3 |
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
19 |
21 |
=
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
1 |
4 |
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
97 |
20 |
123 |
20 |
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
18 |
5 |
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
11 |
2 |
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
7 |
4 |
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
54 |
21 |
=
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
1 |
4 |
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
18 |
5 |
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
11 |
2 |
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000. −
27 |
6 |
=
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
1 |
4 |
=10.
(3)1+2+3+4+…+99+100+99+…+4+3+2+1
=[(1+100)×100÷2]+[(99+1)×99÷2],
=5050+4950,
=10000.
看了 (1)8.25+[2.85-...的网友还看了以下:
解方程:x-6.75=1.684×(0.3+x)=4.80.7x+6×5=37,1.2x-0.8x 2020-04-07 …
0.26×100=530÷100=2.35×10=7.5÷10=1.24÷100=2÷1000=0 2020-04-07 …
(2011•阳谷县)直接写得数.0.13=2.7-0.25-75%=32×0.25=3.2÷10% 2020-04-07 …
急,要不过时间就没这题甲、乙两数之比为7:3,两数之差为10,甲、乙两数各是多少?(用方程解)算式 2020-04-07 …
科学计数之间的加减乘除怎么运算啊?不会算每次只能把0化开来太麻烦求指教,怎么算.比如1*10^7+ 2020-05-23 …
用小数表示下列各数:①5×10ˆ-5②3.6×10ˆ-2③-1.27×10ˆ-7④-5×10^-1 2020-06-06 …
在一条笔直的长河中有甲乙两条长船,现同时由A地……………………我列出了算式,算式:x/(7.5+2 2020-06-27 …
如图计算平行四边形的面积列式为[]A.7.5×8B.8×6C.10×6D.10×7.5 2020-07-13 …
算一算0.45×10=0.68+3.2=0.5×0.2=7.8÷10=7.5-2.4=6.3÷3= 2020-07-20 …
将下列数学术语翻译成英文(数字符号都须用英文)2+8=10-7.5-(-6.8)=0.7│-5│= 2020-07-25 …