早教吧作业答案频道 -->数学-->
已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),当0≤X≤1时,f(x)=1/2x,求使F(X)=-1/2在[0,2010]上的所有X的个数.
题目详情
已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),当0≤X≤1时,f(x)=1/2x,求使F(X)=-1/2在[0,2010]上的所有X的个数.
▼优质解答
答案和解析
由已知有 f(x+2)=-f(x) 推出 f(x+4)=-f(x+2)=f(x)
即f(x)是以4为周期的周期函数,因此只需求出在[0,4]上有多少个x使得f(x)
等于-1/2即可.
[0,1]上,f(x)=1/2x;
[1,2]上,f(x)=-f(x-2),注意 x-2 ∈[-1,0],而f(x)是奇函数,在[-1,0]上的
f(x)=-f(-x)=-1/2(-x)=1/2x (∵-x∈[0,1]) 故而
f(x)=-f(x-2)=-1/2(x-2)=-1/2x+1;
[2,3]上,f(x)=-f(x-2)=-1/2(x-2)(同样∵x-2∈[0,1])
[3,4]上,f(x)=-f(x-2)=1/2(x-2-2)=1/2x-2(理由同上)
画出图形易知[0,4]上f(x)=-1/2 的只有x=3这一个,
2010÷4=502……2 ,剩下的[2008,2010]中没有,所以共有502个.
即f(x)是以4为周期的周期函数,因此只需求出在[0,4]上有多少个x使得f(x)
等于-1/2即可.
[0,1]上,f(x)=1/2x;
[1,2]上,f(x)=-f(x-2),注意 x-2 ∈[-1,0],而f(x)是奇函数,在[-1,0]上的
f(x)=-f(-x)=-1/2(-x)=1/2x (∵-x∈[0,1]) 故而
f(x)=-f(x-2)=-1/2(x-2)=-1/2x+1;
[2,3]上,f(x)=-f(x-2)=-1/2(x-2)(同样∵x-2∈[0,1])
[3,4]上,f(x)=-f(x-2)=1/2(x-2-2)=1/2x-2(理由同上)
画出图形易知[0,4]上f(x)=-1/2 的只有x=3这一个,
2010÷4=502……2 ,剩下的[2008,2010]中没有,所以共有502个.
看了 已知定义在R上的奇函数f(x...的网友还看了以下:
帮忙解决一道高数题设f(x)具有二阶连续导数,f(0)=0,f'(0)=0,f''(x)>0.在曲 2020-05-16 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
f(0)=0,则f(x)在x=0处可导的充要条件为A.lim(1/h^2)f(1-cosh),h→ 2020-06-12 …
f(x)在[0,1]连续,在(0,1)可导.f(0)=0,f(1)=1.证明存在两点a,b属于(f 2020-06-18 …
f(0)=0,则f(x)在x=0处可导的充要条件为A.lim(1/h^2)f(1-cosh),h→ 2020-06-18 …
设f(x)在x0∈(a,b)处可导,且f′(x0)>0,则在下列结论正确的一个是()A.f(x)在 2020-07-31 …
在f(m,n)中,.m.n.f(m,n)均为非负整数且对任意的m,n有f(0,n)=n+1,f(m 2020-07-31 …
函数f(0)+f(1)+f(2)=3f(3)=1证明f'(x)=0设函数f(x)在[0,3]上连续 2020-08-02 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …
设函数f(x)对任意函数x,y,有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,求f 2020-12-08 …