早教吧作业答案频道 -->数学-->
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...1/(1+2+3+...20)怎么算,
题目详情
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...1/(1+2+3+...20)怎么算,
▼优质解答
答案和解析
1+2+3+...+n=(1+n)*n/2.
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...1/(1+2+3+...20)
=1+1/[2(2+1)/2]+1/[3(3+1)/2]+1/[4(4+1)/2]+...+1/[20(20+1)/2]
=1+2/(2*3)+2/(3*4)+2/(4*5)+...+2/(20*21)
=1+2[1/(2*3)+1/(3*4)+1/(4*5)+...+1/(20*21)]
=1+2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/20-1/21)
=1+2(1/2-1/21)
=1+2(19/42)
=1+(19/21)
=40/21.
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...1/(1+2+3+...20)
=1+1/[2(2+1)/2]+1/[3(3+1)/2]+1/[4(4+1)/2]+...+1/[20(20+1)/2]
=1+2/(2*3)+2/(3*4)+2/(4*5)+...+2/(20*21)
=1+2[1/(2*3)+1/(3*4)+1/(4*5)+...+1/(20*21)]
=1+2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/20-1/21)
=1+2(1/2-1/21)
=1+2(19/42)
=1+(19/21)
=40/21.
看了 1+1/(1+2)+1/(1...的网友还看了以下: