早教吧作业答案频道 -->数学-->
如题,关于黄金矩形的.宽与长之比为根号五减一比二的矩形叫黄金矩形,黄金矩形使人赏心悦目,它给我们以协调,匀称的美感.如图,如果在一个黄金矩形里面画一个正方形,那么留下的矩形还是
题目详情
如题,关于黄金矩形的.
宽与长之比为根号五减一比二的矩形叫黄金矩形,黄金矩形使人赏心悦目,它给我们以协调,匀称的美感.如图,如果在一个黄金矩形里面画一个正方形,那么留下的矩形还是黄金矩形吗?请证明你的结论.
宽与长之比为根号五减一比二的矩形叫黄金矩形,黄金矩形使人赏心悦目,它给我们以协调,匀称的美感.如图,如果在一个黄金矩形里面画一个正方形,那么留下的矩形还是黄金矩形吗?请证明你的结论.
▼优质解答
答案和解析
假设这个黄金矩形的长为2,则宽为√5-1
在黄金矩形里面画一个正方形,则正方形的边长为2
那么留下的矩形的长是√5-1,宽为2-(√5-1)=3-√5
留下的矩形的宽与长之比为
(3-√5):(√5-1)
=[(3-√5)(√5+1)]:[(√5-1)(√5+1)]
=(3√5+3-5-√5):4
=(2√5-2):4
=(√5-1):2
所以
留下的矩形还是黄金矩形!
在黄金矩形里面画一个正方形,则正方形的边长为2
那么留下的矩形的长是√5-1,宽为2-(√5-1)=3-√5
留下的矩形的宽与长之比为
(3-√5):(√5-1)
=[(3-√5)(√5+1)]:[(√5-1)(√5+1)]
=(3√5+3-5-√5):4
=(2√5-2):4
=(√5-1):2
所以
留下的矩形还是黄金矩形!
看了 如题,关于黄金矩形的.宽与长...的网友还看了以下:
(1)老师给小悦14个相同的练习本.如果小悦把这些本子全都分给冬冬和阿奇,有多少种不同的分法?(2 2020-05-16 …
小悦、冬冬和阿奇三个人各有一些钱,其中小悦的钱数是冬冬的两倍,小悦和冬冬的钱数总是阿奇的6倍.老师 2020-05-16 …
阿奇、冬冬和小悦共有75张巨人积分卡,阿奇先给冬冬5张,冬冬又给小悦6张,小悦再给阿奇1张,最后他 2020-05-16 …
某程序将256×256的矩阵置初值0。现假定分给这个矩阵的内存块为1页,页面大小为每页256个整数字 2020-05-24 …
矩阵存在相似对角阵的充要条件是什么?如果已知一个方阵A,肯定能找到它的等价阵却不一定能找到它的相似 2020-06-18 …
速度给定加转矩限幅的方式?很多张力控制的帖子上看到“速度给定加转矩限幅的方式”,我理解的是:张力用 2020-06-19 …
古时候,一位国王给金匠,要求金匠用这块金属为他制一顶王冠.金匠做好王冠交给国王,虽然王冠的质量与原 2020-06-22 …
为什么北宋南宋都要给北夷钱财北宋时宋比辽强,辽对宋称臣.宋要给辽钱.南宋时金比宋强,宋对金称臣,宋 2020-07-28 …
给定一矩阵A,求一矩阵P,使(P*)AP=/\,其中(P*)为P的逆矩阵,/\为对角阵.顺便说说题 2020-08-03 …
任意给定的矩形,问是否一定存在另一矩形其周长和面积均为原矩形的1/2给与代数证明.周长是原来的1/2 2021-01-09 …