早教吧作业答案频道 -->数学-->
用定义求3/π到0的定积分cosxdx,为什么用定义求和用牛顿莱布尼茨公式求的答案符号相反呢?
题目详情
用定义求3/π 到0的定积分cosxdx,为什么用定义求和用牛顿莱布尼茨公式求的答案符号相反呢?
▼优质解答
答案和解析
By formula:
∫(π/3,0) cosx dx
= -sinx
= -√3/2
By definition:
The nth Area = Σ(k=1->n) cos[π/3 + (-kπ/3)/n] * (-π/3)/n
= [-π/(3n)]Σ(k=1->n) cos[π/3-(kπ)/(3n)]
= [-π/(3n)] * (1/4){√3 * cot[π/(6n)] + 1}
= -(π/12) * {√3 * cot[π/(6n)] + 1}/n
A = ∫(π/3,0) cosx dx
= lim(n->∞) -(π/12) * {√3 * cot[π/(6n)] + 1}/n
= (-π/12)lim(n->∞) {1 + √3/tan[π/(6n)]}/n
= (-π/12){[lim(n->∞) 1/n] + [√3lim(n->∞) 1/(n*tan(π/(6n))]}
= (-π√3/12)lim(n->∞) 1/{n*tan[π/(6n)]}
= (-π√3/12)lim(n->∞) 6/{π[tan²(π/(6n))+1]},L’Hospital's Rule
= (-√3/2)lim(n->∞) 1/{1+tan²[π/(6n)]}
= (-√3/2) * 1/(1+0)
= -√3/2
∫(π/3,0) cosx dx
= -sinx
= -√3/2
By definition:
The nth Area = Σ(k=1->n) cos[π/3 + (-kπ/3)/n] * (-π/3)/n
= [-π/(3n)]Σ(k=1->n) cos[π/3-(kπ)/(3n)]
= [-π/(3n)] * (1/4){√3 * cot[π/(6n)] + 1}
= -(π/12) * {√3 * cot[π/(6n)] + 1}/n
A = ∫(π/3,0) cosx dx
= lim(n->∞) -(π/12) * {√3 * cot[π/(6n)] + 1}/n
= (-π/12)lim(n->∞) {1 + √3/tan[π/(6n)]}/n
= (-π/12){[lim(n->∞) 1/n] + [√3lim(n->∞) 1/(n*tan(π/(6n))]}
= (-π√3/12)lim(n->∞) 1/{n*tan[π/(6n)]}
= (-π√3/12)lim(n->∞) 6/{π[tan²(π/(6n))+1]},L’Hospital's Rule
= (-√3/2)lim(n->∞) 1/{1+tan²[π/(6n)]}
= (-√3/2) * 1/(1+0)
= -√3/2
看了 用定义求3/π到0的定积分c...的网友还看了以下:
若干个有理数相乘积的符号是由什么决定 2020-04-08 …
平面向量数量积的求解三角形ABC中,AC=2,BC=6,已知点O是三角形ABC内一点,且满足OA+ 2020-05-14 …
向量的内积和外积的符号a和b是向量,a*b是外积,a.b是内积.但a/b是内积还是外积,a^2呢? 2020-05-14 …
应用题(思考题)1.一个长方形被分成4个不同的三角形,①号三角形面积占长方形面积的15%,②号三角 2020-05-23 …
长度单位,面积单位,体积单位之间的进率,还有长方形表面积的求法. 2020-06-08 …
想问个问题(大二的高数关于用定积分求面积的):求p=3cosa及p=1cosa围成图形的公共部分的 2020-06-11 …
几个有理数相乘,怎样确定积的符号啊 2020-06-14 …
已知2减x乖x减7的积的根号等于2减x乘x减7的积的根号,求x的取值范围 2020-06-20 …
一个正三棱柱的每一条棱长都为a,则经过底面一边和相对侧棱的不在该底面的端点的截面面积的求法 2020-06-27 …
关于一个体积的求法急上底是边长为0.5M的正方形,下底是边长为2M的正方形,高为1M.这个东西体积 2020-06-27 …