早教吧 育儿知识 作业答案 考试题库 百科 知识分享

1/(x-10)+1/(x-6)=1/(x-7)+1/(x-9)的解

题目详情
1/(x-10)+1/(x-6)=1/(x-7)+1/(x-9)的解
▼优质解答
答案和解析
通分得:
[(X-6)+(X-10)]/[(X-6)*(X-10)]=[(X-7)+(X-9)]/[(X-7)*(X-9)]
(2X-16)/(X^2-16X+60)=(2X-16)/(X^2-16X+63)
要使方程成立,则2X-16=0(1)或X^2-16X+60=X^2-16X+63(2)
(1)的解为:X=8;(2)无解
所以:1/(x-10)+1/(x-6)=1/(x-7)+1/(x-9)的解为X=8