早教吧作业答案频道 -->其他-->
设α1,α2,…,αn是Rn的一组基,证明:如果β属于Rn,且(β,αi)=0(i=1,2,...则β=0;(2)如果β1,β2属于Rn,使(β1,αi)=(β2,αi)(i=1,2...n)则β1=β2~拜托啦〜〜(ToT)/~
题目详情
设α1,α2,…,αn是Rn的一组基,证明:如果β属于Rn,且(β,αi)=0(i=1,2,...
则β=0;(2)如果β1,β2属于Rn,使(β1,αi)=(β2,αi)(i=1,2...n)则β1=β2~拜托啦〜〜(ToT)/~
则β=0;(2)如果β1,β2属于Rn,使(β1,αi)=(β2,αi)(i=1,2...n)则β1=β2~拜托啦〜〜(ToT)/~
▼优质解答
答案和解析
(1)
因为α1,α2,…,αn是Rn的一组基
所以β可由α1,α2,…,αn线性表示
设 β=k1α1+k2α2+…+knαn
则 (β,β)=(β,k1α1+k2α2+…+knαn)=k1(β,α1)+k2(β,α2)+...+kn(β,αn)=0
所以 β=0
(2)
因为 (β1,αi)=(,αi) (i=1,2...n)
所以 (β1-β2,αi)=0 (i=1,2...n)
由(1)知 β1-β2=0
所以 β1=β2.
因为α1,α2,…,αn是Rn的一组基
所以β可由α1,α2,…,αn线性表示
设 β=k1α1+k2α2+…+knαn
则 (β,β)=(β,k1α1+k2α2+…+knαn)=k1(β,α1)+k2(β,α2)+...+kn(β,αn)=0
所以 β=0
(2)
因为 (β1,αi)=(,αi) (i=1,2...n)
所以 (β1-β2,αi)=0 (i=1,2...n)
由(1)知 β1-β2=0
所以 β1=β2.
看了 设α1,α2,…,αn是Rn...的网友还看了以下:
一个加密体制或称密码体制是由下列哪些部门分组成的? I.明文空间Ⅱ.密文空间Ⅲ.密钥空 2020-05-24 …
(高等代数)n阶行列式A的值为c,若将A的每个元素aij换成(-1)的i+j次方aij则得到的行列 2020-06-10 …
请教老师一个线性代数问题能不能由向量组1不能由向量组2线性表示推出向量组1的秩大于向量组2的秩 2020-06-30 …
线性代数线性方程组问题公共解和同解方程组大题,遇到过不少次了答案的作法让人晕作法1:分别求出基础解 2020-07-12 …
为什么代数余子式前要加-1的i+j次方,怎么得出这个结论的呀? 2020-08-03 …
代数余子式前为什么有-1的(i+j)次幂,这个是怎么来的或是怎么推导出来的.抱歉我只有5分了,只能 2020-08-03 …
设向量组α1,α2..α3线性无关,设β=b1α1+b2α2+..bsαs,如果对于某个i(1≤i≤ 2020-10-31 …
求解一道初等数论题求证ln3/ln2是超越数楼下得太笼统了换句话就是如何把ln3/ln2化为a的b次 2020-11-06 …
哪位大侠能帮我证眀下线性代数第52页推论2:若向量组1可由向量组2线性表示,则向量组1的秩不超过向量 2020-12-23 …
概率相关的问题,好能用贝叶斯定理来回答问题大致描述如下:你要不是组1,要不就是组2.组1的人比较牛, 2021-01-04 …