早教吧作业答案频道 -->数学-->
设数列{an}前n项和Sn=2an-2^n(1)证明{a(n+1)-2an}是等比数列(2)求{an}通项第2问不会不要紧,尽量做
题目详情
设数列{an}前n项和Sn=2an-2^n(1)证明{a(n+1)-2an}是等比数列(2)求{an}通项
第2问不会不要紧,尽量做
第2问不会不要紧,尽量做
▼优质解答
答案和解析
1)Sn=2an-2^n
S(n+1)=2a(n+1)-2^(n+1)
相减得a(n+1)=2a(n+1)-2^(n+1)-2an+2^n
化简得a(n+1)-2an=2^n
说明{a(n+1)-2an}是等比数列
2)a(n+1)-2an=2^n
2(an-2a(n-1))=2*2^(n-1)=2^n
2^2(a(n-1)-a(n-2))=2^2*2^(n-2)=2^n
.
.
.
2^(n-1)*(a2-2a1)=2^(n-1)*2^1=2^n
上面式子相加有:
a(n+1)-2^n*a1`=(2^n)*n
Sn=2an-2^n中令n=1,a1=2
所以a(n+1)=(2^n)*(n+2)
an=(2^(n-1))*(n+1)
S(n+1)=2a(n+1)-2^(n+1)
相减得a(n+1)=2a(n+1)-2^(n+1)-2an+2^n
化简得a(n+1)-2an=2^n
说明{a(n+1)-2an}是等比数列
2)a(n+1)-2an=2^n
2(an-2a(n-1))=2*2^(n-1)=2^n
2^2(a(n-1)-a(n-2))=2^2*2^(n-2)=2^n
.
.
.
2^(n-1)*(a2-2a1)=2^(n-1)*2^1=2^n
上面式子相加有:
a(n+1)-2^n*a1`=(2^n)*n
Sn=2an-2^n中令n=1,a1=2
所以a(n+1)=(2^n)*(n+2)
an=(2^(n-1))*(n+1)
看了 设数列{an}前n项和Sn=...的网友还看了以下:
设函数fn(x)=xn+bx+c(n∈N+,b,c∈R)(1)设n≥2,b=1,c=-1,证明:设函 2020-03-30 …
S=(1+1/1*2+(2+1/2*3)+(3+1/3*4)+...+(20+1/20*21)S= 2020-04-27 …
若n为一自然数,说明n(n+1)(n+2)(n+3)与1的和为一平方数n(n+1)(n+2)(n+ 2020-05-16 …
1+2+3+n=2分之1n(n+1),n是正整数,研究1*2+2*3+你(n+1),观察1*2=3 2020-05-20 …
在(n+1)=n^2+2n+1中,当n=1,2,3……这些正整数时,可以得到n个等式将这些等式在( 2020-06-10 …
数列{n×2^(n-1)}的前n项和为多少?A.-n*2^n-1+2^nBn*2^n+1-2^nC 2020-07-09 …
1.设Sn是数列an的前n项和且Sn=n+1/3^n-1(1/3^n指一除以3的n次方),bn=( 2020-07-15 …
已知数列{an}中,a1=5,an=2a(n-1)+2^n-1(n∈N*且n≥2)(1)求a2,a 2020-07-29 …
求数列an=n(n+1)的前n项和.an=n(n+1)=[n(n+1)(n+2)-(n-1)n(n+ 2020-12-03 …
已知直线y=[-(n+1)/(n+2)]x+[1/(n+2)](n为正整数)与两坐标轴围成的三角形面 2021-02-03 …