早教吧作业答案频道 -->其他-->
在直角坐标系中,M为x轴正半轴上一点,⊙M交x轴于A、B两点,交y轴于C、D两点,P为AB延长线上一点(不含B点),连接PC交⊙M于Q,连接DQ,若A(-1,0),C(0,3)(1)求圆心M的坐标;(2)
题目详情
在直角坐标系中,M为x轴正半轴上一点,⊙M交x轴于A、B两点,交y轴于C、D两点,P为AB延长线上一点(不含B点),连接PC交⊙M于Q,连接DQ,若A(-1,0),C(0,
)


(1)求圆心M的坐标;
(2)过B点作BH⊥DQ于H,当P点运动时,线段CQ、QH、DH有何数量关系,证明你的结论;
(3)R为⊙M的直径DF延长线上的一个动点(不包括F点),过B、F、R三点作⊙N,CF交⊙N于T,当R点在DF延长线上运动时,FT-FR的值是否变化?请说明理由.
| 3 |


(1)求圆心M的坐标;
(2)过B点作BH⊥DQ于H,当P点运动时,线段CQ、QH、DH有何数量关系,证明你的结论;
(3)R为⊙M的直径DF延长线上的一个动点(不包括F点),过B、F、R三点作⊙N,CF交⊙N于T,当R点在DF延长线上运动时,FT-FR的值是否变化?请说明理由.
▼优质解答
答案和解析
(1)连接MC、AC,
∵A(-1,0),C(0,
),
∴OA=1,OC=
,AC=
=2
tan∠CAB=
=
,
∴∠CAB=60°,
∵MA=MC,
∴△ACM是等边三角形,
∴MA=MC=AC=2,
∴OM=2-1=1,
即M的坐标是(1,0);
(2)线段CQ、QH、DH的数量关系是CQ=DH-HQ,
证明:连接BC、BD,在DQ上截取DN=CQ,连接BN,
∵AM⊥CD,
∴由垂径定理得:CO=DO,
∴CB=DB,
∵∠QCB和∠QDB都对弧BQ,
∴∠QCB=∠QDB,
∵在△CQB和△DNB中
,
∴△CQB≌△DNB,
∴BN=BQ,
∵BH⊥DQ,
∴QH=HN,
∴CQ=DN=DH-HN=DH-HQ,
即线段CQ、QH、DH的数量关系是CQ=DH-HQ;
(3)FT-FR的值不变化,永远等于2,
理由是:连接BF、BT、BR,
∵OM=1,OD=OC=
(1)连接MC、AC,∵A(-1,0),C(0,
| 3 |
∴OA=1,OC=
| 3 |
(
|
tan∠CAB=
| OC |
| OA |
| 3 |
∴∠CAB=60°,
∵MA=MC,
∴△ACM是等边三角形,
∴MA=MC=AC=2,
∴OM=2-1=1,
即M的坐标是(1,0);
(2)线段CQ、QH、DH的数量关系是CQ=DH-HQ,
证明:连接BC、BD,在DQ上截取DN=CQ,连接BN,
∵AM⊥CD,
∴由垂径定理得:CO=DO,
∴CB=DB,
∵∠QCB和∠QDB都对弧BQ,

∴∠QCB=∠QDB,
∵在△CQB和△DNB中
|
∴△CQB≌△DNB,
∴BN=BQ,
∵BH⊥DQ,
∴QH=HN,
∴CQ=DN=DH-HN=DH-HQ,
即线段CQ、QH、DH的数量关系是CQ=DH-HQ;
(3)FT-FR的值不变化,永远等于2,理由是:连接BF、BT、BR,
∵OM=1,OD=OC=
看了 在直角坐标系中,M为x轴正半...的网友还看了以下:
在平面直角坐标系中,A(4,0),B(0,-4),C(0,4),点M为射线OA上A点右侧一动点在平 2020-05-13 …
如图,已知在半圆0中,直径MN=10,正方形ABCD的四个顶点分别在半径OM,OP,以及圆o上,并 2020-05-16 …
已知圆C:x^2+y^2-2x+4y-4=0,直线L:x+y+3=0,求直线L已知圆C:x^2+y 2020-05-19 …
在直角坐标系中,已知点A(-2.0),B(0,4)C(0.3).过C作直线交X轴于D.使以D.O. 2020-06-02 …
如图,在平面直角坐标系中,A(0,a)、B(b,0)、C(c,0),且a-2+|b-2|+(c+2 2020-06-12 …
在直角坐标系中,已知点A(0,2),点B(-2,0)过点B和线段OA的中点C作直线BC,以线段BC 2020-06-14 …
小明学习了垂径定理,做了下面的探究,请根据题目要求帮小明完成探究.(1)更换定理的题设和结论可以得 2020-06-19 …
天正里怎么移动坐标点出总平面图,原坐标点原点移位了,想找回原坐标原点,在低版本3.0中直接将已知的 2020-08-01 …
直线方程的一般式当直线过原点时,C=A^2+B^2=0,(A^2+B^2=0)不是说AB不能同时为 2020-08-01 …
(Ⅰ)求经过直线l1:x+2y-4=0与l2:2x-y-3=0的交点且平行于直线l3:2x+y-3 2020-08-01 …