早教吧作业答案频道 -->数学-->
证明sin(2a+b)/sina-2cos(a+b)=sinb/sina
题目详情
证明sin(2a+b)/sina-2cos(a+b)=sinb/sina
▼优质解答
答案和解析
左边=[sin(2a+b)-2cos(a+b)sina]/sina
=[sina*cos(a+b)+sin(a+b)*cosa-2cos(a+b)sina]/sina
=[sin(a+b)*cosa-cos(a+b)sina]/sina
=sin(a+b-a)/sina
=sinb/sina
=右边
所以结论成立.
逆推法:
sin(2a+b)/sina-2cos(a+b)=sinb/sina
<==>sin(a+a+b)-2cos(a+b)sina=sinb
<==>sinacos(a+b)+cosasin(a+b)-2cos(a+b)sina=sinb
<==>cosasin(a+b)-cos(a+b)sina=sinb
<==>sin(a+b-a)=sinb
<==>sinb=sinb恒成立
以上各步可逆
证毕
=[sina*cos(a+b)+sin(a+b)*cosa-2cos(a+b)sina]/sina
=[sin(a+b)*cosa-cos(a+b)sina]/sina
=sin(a+b-a)/sina
=sinb/sina
=右边
所以结论成立.
逆推法:
sin(2a+b)/sina-2cos(a+b)=sinb/sina
<==>sin(a+a+b)-2cos(a+b)sina=sinb
<==>sinacos(a+b)+cosasin(a+b)-2cos(a+b)sina=sinb
<==>cosasin(a+b)-cos(a+b)sina=sinb
<==>sin(a+b-a)=sinb
<==>sinb=sinb恒成立
以上各步可逆
证毕
看了 证明sin(2a+b)/si...的网友还看了以下: