早教吧作业答案频道 -->数学-->
已知椭圆x²/9+y²=1,过左焦点F作倾斜角为30°的直线交椭圆与AB两点,求AB弦长
题目详情
已知椭圆x²/9+y²=1,过左焦点F作倾斜角为30°的直线交椭圆与AB两点,求AB弦长
▼优质解答
答案和解析
c^2=a^2-b^2=9-1=8,
c=2√2,
左焦点坐标F(-2√2,0),
直线斜率k=tan30°=√3/3,
直线方程:y=√3/3(x+2√2),
代入椭圆方程,
x^2/9+[√3/3(x+2√2)]^2=1,
4x^2+12√2x+15=0,
根据韦达定理,
x1+x2=-3√2,
x1*x2=15/4,
根据弦长公式,
|AB|=√(1+k^2)(x1-x2)^2
=√(1+1/3)[(x1+x2)^2-4x1x2]
=√(4/3)[18-4*15/4]
=2.
∴|AB|=2.
c=2√2,
左焦点坐标F(-2√2,0),
直线斜率k=tan30°=√3/3,
直线方程:y=√3/3(x+2√2),
代入椭圆方程,
x^2/9+[√3/3(x+2√2)]^2=1,
4x^2+12√2x+15=0,
根据韦达定理,
x1+x2=-3√2,
x1*x2=15/4,
根据弦长公式,
|AB|=√(1+k^2)(x1-x2)^2
=√(1+1/3)[(x1+x2)^2-4x1x2]
=√(4/3)[18-4*15/4]
=2.
∴|AB|=2.
看了 已知椭圆x²/9+y²=1,...的网友还看了以下: