早教吧作业答案频道 -->数学-->
已知椭圆方程x2\a2+y2\b2=1(a>b>0),设F为椭圆的一个焦点,P是椭圆上的一点①一平行于x轴的直线L交椭圆于AB两点,求证AF+BF为定值②社长轴的两端点为AB连接AP,BP分别交短轴所在直线于MN,求证:OM*ON为
题目详情
已知椭圆方程x2\a2+y2\b2=1(a>b>0),设F为椭圆的一个焦点,P是椭圆上的一点
①一平行于x轴的直线L交椭圆于AB两点,求证AF+BF为定值
②社长轴的两端点为AB连接AP,BP分别交短轴所在直线于MN,求证:OM*ON为定值
①一平行于x轴的直线L交椭圆于AB两点,求证AF+BF为定值
②社长轴的两端点为AB连接AP,BP分别交短轴所在直线于MN,求证:OM*ON为定值
▼优质解答
答案和解析
1)设F2为另一焦点,易知y轴将线段|AB|,|FF2|垂直平分
根据对称性,可知AFF1B四点构成等腰梯形,对角线相等,有AF1=BF,
所以AF+BF=AF+AF1=2a,为定值
2)由已知A(-a,0),B(a,o)设P(m,n)则m^2/a^2+n^2/b^2=1(方程一)
A(-a,0),P(m,n),M(0,y1)三点共线,可求得M(0,na/(m-a))
同理根据B,P,N(0,y2)三点共线,可求得N(0,-na/(m+a))
所以OM*ON=|y1*y2|=(n^2*a^2)/(m^2-a^2)
将方程一变形带入上式
可得OM*ON=b^2,为定值.
·····
根据对称性,可知AFF1B四点构成等腰梯形,对角线相等,有AF1=BF,
所以AF+BF=AF+AF1=2a,为定值
2)由已知A(-a,0),B(a,o)设P(m,n)则m^2/a^2+n^2/b^2=1(方程一)
A(-a,0),P(m,n),M(0,y1)三点共线,可求得M(0,na/(m-a))
同理根据B,P,N(0,y2)三点共线,可求得N(0,-na/(m+a))
所以OM*ON=|y1*y2|=(n^2*a^2)/(m^2-a^2)
将方程一变形带入上式
可得OM*ON=b^2,为定值.
·····
看了 已知椭圆方程x2\a2+y2...的网友还看了以下:
设f(x)=(x-a)^n*g(x),g(x)在x=a临域内有(n-1)阶连续的到函数,证明:f( 2020-04-27 …
matlab 一维数组中的连续三个数构成坐标,画出空间分布比如I(n+1)=mod(65539*I 2020-05-13 …
1+x+x的2次方+x的3次方+...+x的n次方+...(n接近无穷大)=s=(1-x的n次方) 2020-05-14 …
如果f(x)在[0,1]连续,那么F(x)=f(x)-f(x+1/n)在哪里连续?答案是[0,1- 2020-06-06 …
1.随机变量X的分布列为P{X=k}=a/N,k=1,2,...N求常数a2.设随机变量X只可能取 2020-07-13 …
关于f(x)n阶可导的两个问题f(x)n阶可导是指它的n阶导数为一个不为0的常数,还是为0?f(x 2020-08-02 …
多项式连乘求解(x-a1)(x-a2)...(x-an)如上式,n个式子连乘,显然x的n次方项系数 2020-08-03 …
已知M=2xy/x^2-y^2,N=x^2+y^2/x^2-y^2,用“+”或“—”连接M,N,有三 2020-11-01 …
求函数f(x)lim(n趋向于无穷)x^(n+2)-x^(-n)/x^n+x^(-n-1)的连续区间 2020-12-15 …
设函数f(x)=讨论:(1)n取何值时,f(x)在x=0处连续?(2)n取何值时,f(x)在x=0处 2021-01-12 …