早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•仙桃)如图,四边形ABCD是平行四边形,E,F为对角线AC上两点,连接ED,EB,FD,FB.给出以下结论:①BE∥DF;②BE=DF;③AE=CF.请你从中选取一个条件,使∠1=∠2成立,并给出证明.

题目详情
(2014•仙桃)如图,四边形ABCD是平行四边形,E,F为对角线AC上两点,连接ED,EB,FD,FB.给出以下结论:①BE∥DF;②BE=DF;③AE=CF.请你从中选取一个条件,使∠1=∠2成立,并给出证明.
▼优质解答
答案和解析
方法一:
补充条件①BE∥DF.
证明:如图,∵BE∥DF,
∴∠BEC=∠DFA,
∴∠BEA=∠DFC,
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠BAE=∠DCF,
在△ABE与△CDF中,
∠BEA=∠DFC
AB=CD
∠BAE=∠DCF

∴△ABE≌△CDF(ASA),
∴BE=DF,
∴四边形BFDE是平行四边形,
∴ED∥BF,
∴∠1=∠2;

方法二:
补充条件③AE=CF.
证明:∵AE=CF,∴AF=CE.
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠BAF=∠DCE,
在△ABF与△CDE中,
AF=CE
∠BAF=∠DCE
AB=CD

∴△ABF≌△CDE(SAS),
∴∠1=∠2.