早教吧作业答案频道 -->数学-->
如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.(3)在(2)
题目详情
如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
(3)在(2)的条件下,要是四边形ADCF为正方形,在△ABC中应添加什么条件,请直接把补充条件写在横线上______(不需说明理由).
▼优质解答
答案和解析
(1)证明:连接DF,
∵E为AD的中点,
∴AE=DE,
∵AF∥BC,
∴∠AFE=∠DBE,
在△AFE和△DBE中,
,
∴△AFE≌△DBE(AAS),
∴EF=BE,
∵AE=DE,
∴四边形AFDB是平行四边形,
∴BD=AF,
∵AD为中线,
∴DC=BD,
∴AF=DC;
(2)四边形ADCF的形状是菱形,
证明:∵AF=DC,AF∥BC,
∴四边形ADCF是平行四边形,
∵AC⊥AB,
∴∠CAB=90°,
∵AD为中线,
∴AD=DC,
∴平行四边形ADCF是菱形;
(3)AC=AB,
理由是:∵∠CAB=90°,AC=AB,AD为中线,
∴AD⊥BC,
∴∠ADC=90°,
∵四边形ADCF是菱形,
∴四边形ADCF是正方形,
故答案为:AC=AB.

∵E为AD的中点,
∴AE=DE,
∵AF∥BC,
∴∠AFE=∠DBE,
在△AFE和△DBE中,
|
∴△AFE≌△DBE(AAS),
∴EF=BE,
∵AE=DE,
∴四边形AFDB是平行四边形,
∴BD=AF,
∵AD为中线,
∴DC=BD,
∴AF=DC;
(2)四边形ADCF的形状是菱形,
证明:∵AF=DC,AF∥BC,
∴四边形ADCF是平行四边形,
∵AC⊥AB,
∴∠CAB=90°,
∵AD为中线,
∴AD=DC,
∴平行四边形ADCF是菱形;
(3)AC=AB,
理由是:∵∠CAB=90°,AC=AB,AD为中线,
∴AD⊥BC,
∴∠ADC=90°,
∵四边形ADCF是菱形,
∴四边形ADCF是正方形,
故答案为:AC=AB.
看了 如图,在△ABC中,AD是B...的网友还看了以下:
已知:△ABC是等边三角形.(1)如图1,点D在AB边上,点E在AC边上,BD=CE,BE与CD交 2020-05-13 …
如图,在梯形ABCD中,AD//BC,E是CD的中点,连接AE并延长交BC的延长线于点F.若AB= 2020-05-16 …
一个数学综合题.Rt△ACB中,∠ACB=90°,AC=BC,M是AB的中点,D是AB上一动点.( 2020-05-21 …
关于电场强度的定义式,下面说法正确的是?A.电场强度的大小与试探电荷的大小成反比B.对电场中某点试 2020-05-21 …
一道困扰我很久的东北育才学校数学周练测试的简单题~~~~~~ABCD-A'B'C'D'是正方体,点 2020-06-05 …
设f(x,y)在区域D上连续,(a,b)是D的一个内点,Ur是D内以(a,b)为中心、以r为半径的 2020-06-18 …
请教汉语拼音高手“点”字的拼法.有两种观点,一是“d-i-an”;一是“d-ian”用文字表述就是 2020-07-03 …
请教汉语拼音专家“点”字的拼法.有两种观点,一是“d-i-an”;一是“d-ian”用文字表述就是 2020-07-03 …
如图,已知BC为圆o的直径,D是直径BC上的一动点(不与点B.O.C重合),过点D作直线AH垂直B 2020-07-31 …
下列说法正确的是()(A)两条直线相交,组成的图形叫做角(B)平分一个角的直线是这个角的平分线(C) 2020-12-07 …