早教吧 育儿知识 作业答案 考试题库 百科 知识分享

“三角形一个内角平分线与另两个内角的外角平分线交于一点”这个定理怎么证明?在线等!速度!

题目详情
“三角形一个内角平分线与另两个内角的外角平分线交于一点”这个定理怎么证明?在线等!速度!
▼优质解答
答案和解析
证明:设P是△ABC的两个外角平分线BP,CP的交点 过P作PE⊥AB于E,PF⊥BC于F,PH⊥AC于H 根据角平分线上的点到角两边距离相等,知 PE=PF,PF=PH 所以PE=PH 又PE⊥AB,PH⊥AC 所以,由到角两边距离相等的点在角平分线上, 知:点P在∠BAC的平分线上 从而说明三角形一个内角平分线与另两个内角的外角平分线交于一点。 【注:三线共点的一般证法,先设两条线相交于一点,再证明第三条线也经过这一点】