早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设f(x)在[0,π]上有连续二阶导数,且f(0)=f(π)=0,令an=2π∫π0f(x)sinnxdx,n=1,2,….证明:∞n=1n2an2收敛.

题目详情
设f(x)在[0,π]上有连续二阶导数,且f(0)=f(π)=0,令an=
2
π
π
0
f(x)sinnxdx,n=1,2,….证明:
n=1
n2an2收敛.
▼优质解答
答案和解析
证明:由题设,对n=1,2,…,有
an=
2
π
π
0
f(x)(sinnx)dx=
-2
π
0
f(x)d(cosnx)
=
-2
[
f(x)(cosnx)|
x=π
x=0
-
π
0
f′(x)(cosnx)dx]
=
2
n
[
π
0
f′(x)d(sinnx)]
=
2
n
[
f′(x)(sinnx)|
x=π
x=0
-
π
0
f″(x)(sinnx)dx]
=
-2
n
[
π
0
f″(x)(sinnx)dx].

由f(x)在[0,π]上有连续二阶导数,知f″(x)sinnx在[0,π]上绝对可积,
即存在M>0,使得
π
0
|f″(x)sinnx|dx≤M.
于是,n2
a
2
n
=
4
n2
[
π
0
f″(x)sinnxdx]2≤
4
n2
[
π
0
|f″(x)sinnx|dx]2≤
4M2
n2

n=1
4M2
n2
收敛,利用比较判别法,得级数
n=1
n2
a
2
n
收敛.