早教吧作业答案频道 -->其他-->
若定义在区间[-2015,2015]上的函数f(x)满足:对于任意的x1,x2∈[-2015,2015],都有f(x1+x2)=f(x1)+f(x2)-2014,且x>0时,有f(x)>2014,f(x)的最大值、最小值分别为M,N,则M+N的值为
题目详情
若定义在区间[-2015,2015]上的函数f(x)满足:对于任意的x1,x2∈[-2015,2015],都有f(x1+x2)=f(x1)+f(x2)-2014,且x>0时,有f(x)>2014,f(x)的最大值、最小值分别为M,N,则M+N的值为( )
A.2014
B.2015
C.4028
D.4030
A.2014
B.2015
C.4028
D.4030
▼优质解答
答案和解析
∵对于任意的x1,x2∈[-2015,2015],都有f(x1+x2)=f(x1)+f(x2)-2014,
∴令x1=x2=0,得f(0)=2014,
再令x1+x2=0,将f(0)=2014代入可得f(x)+f(-x)=4028.
设x1<x2,x1,x2∈[-2015,2015],
则x2-x1>0,f(x2-x1)=f(x2)+f(-x1)-2014,
∴f(x2)+f(-x1)-2014>2014.
又∵f(-x1)=4028-f(x1),
∴可得f(x2)>f(x1),
即函数f(x)是递增的,
∴f(x)max=f(2015),f(x)min=f(-2015).
又∵f(2015)+f(-2015)=4028,
∴M+N的值为4028.
故选:C.
∴令x1=x2=0,得f(0)=2014,
再令x1+x2=0,将f(0)=2014代入可得f(x)+f(-x)=4028.
设x1<x2,x1,x2∈[-2015,2015],
则x2-x1>0,f(x2-x1)=f(x2)+f(-x1)-2014,
∴f(x2)+f(-x1)-2014>2014.
又∵f(-x1)=4028-f(x1),
∴可得f(x2)>f(x1),
即函数f(x)是递增的,
∴f(x)max=f(2015),f(x)min=f(-2015).
又∵f(2015)+f(-2015)=4028,
∴M+N的值为4028.
故选:C.
看了 若定义在区间[-2015,2...的网友还看了以下:
关于牛顿迭代法的有关问题,高手请进啊!!在牛顿迭代法运用在mathematica中,函数根的n+1 2020-04-12 …
这是什么迭代公式?x(n+1)=x(n)-2*f(x(n))*f1(x(n))/(2*f1(x(n 2020-04-27 …
n次齐次函数设二元函数f(x,y),有:f(tx,ty)=t^n·f(x,y),求证:x·(f对x 2020-05-13 …
m=(sinwx+cosx,√3coswx)n=(coswx-sinwx,2sinwx)f(x)= 2020-05-16 …
m=(sinwx+cosx,√3coswx)n=(coswx-sinwx,2sinwx)f(x)= 2020-05-16 …
已知函数f(x)是偶函数,当x>0时,f(x)=x+4/x,且当x∈[-3,-1]时,n≤f(x) 2020-06-12 …
已知f(x)=x+1/x,对n≥2,n∈N,x>0,求证[f(x)]^n-f(x^n)≥2^n-2 2020-07-26 …
以下四个对应:(1)A=N+,B=N+,f:x→|x-3|;(2)A=Z,B=Q,f:x→2/;(3 2020-11-01 …
下列对应f:A→B是从集合A到集合B的函数的是A.A=R,B={x∈r|x>0},f:x→|x|,f 2021-01-01 …
若函数y=f(x)在[m,n]上的值域为[m,n](m≠n)若函数y=f(x)在[m,n]上的值域为 2021-02-18 …