早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数.(Ⅰ)求的单调区间;(Ⅱ)设,若对任意,均存在,使得,求的取值范围。

题目详情
已知函数 .
(Ⅰ)求 的单调区间;
(Ⅱ)设 ,若对任意 ,均存在 ,使得 ,求 的取值范围。
▼优质解答
答案和解析
已知函数 .
(Ⅰ)求 的单调区间;
(Ⅱ)设 ,若对任意 ,均存在 ,使得 ,求 的取值范围。
(Ⅰ) .
①当 时,由于 ,故
所以, 的单调递增区间为
②当 时,由 ,得 .
在区间 上, ,在区间
所以,函数 的单调递增区间为 ,单调递减区间为 .
(Ⅱ)由已知,转化为 .

由(Ⅱ)知,当 时, 上单调递增,值域为 ,故不符合题意.
(或者举出反例:存在 ,故不符合题意.)
时, 上单调递增,在 上单调递减,
极大值即为最大值,
所以
解得 .

看了 已知函数.(Ⅰ)求的单调区间...的网友还看了以下: