早教吧作业答案频道 -->其他-->
观察与发现:(1)小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得
题目详情
观察与发现:
(1)小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).你认为△AEF是什么形状的三角形?为什么?

实践与运用:
如图,将矩形纸片ABCD按如下顺序进行折叠:对折、展平,得折痕EF(如图①);沿GC折叠,使点B落在EF上的点B′处(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′、GH(如图⑥).
(2)在图②中连接BB′,判断△BCB′的形状,请说明理由;
(3)图⑥中的△GCC′是等边三角形吗?请说明理由.

(1)小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).你认为△AEF是什么形状的三角形?为什么?

实践与运用:
如图,将矩形纸片ABCD按如下顺序进行折叠:对折、展平,得折痕EF(如图①);沿GC折叠,使点B落在EF上的点B′处(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′、GH(如图⑥).
(2)在图②中连接BB′,判断△BCB′的形状,请说明理由;
(3)图⑥中的△GCC′是等边三角形吗?请说明理由.

▼优质解答
答案和解析
(1)△AEF是等腰三角形,
理由是:由第一次折叠可知:∠1=∠2,
∵由第二次折叠可知:EF垂直平分AD,
∴∠AOE=∠AOF=90°,
∴∠AEF=∠AFE,
∴AE=AF,
即△AEF是等腰三角形;

(2)△B′BC是等边三角形,
理由是:连接BB′,
∵由第一次折叠可知:EF垂直平分BC,
∴BB′=B′C,
由第二次折叠可知:BC=B′C,
∴BB′=B′C=BC,
∴△B′BC是等边三角形;

(3)△GCC′是等边三角形,
理由是:∵由折叠可知,GH垂直平分CC′,
∴G′C=GC,
∵由(2)可知∠GCB=∠GCB′=
∠BCB′=30°,
∴∠GCC′=∠BCD-∠BCG=60°,
∴△GCC′是等边三角形.
(1)△AEF是等腰三角形,理由是:由第一次折叠可知:∠1=∠2,
∵由第二次折叠可知:EF垂直平分AD,
∴∠AOE=∠AOF=90°,
∴∠AEF=∠AFE,
∴AE=AF,
即△AEF是等腰三角形;

(2)△B′BC是等边三角形,
理由是:连接BB′,
∵由第一次折叠可知:EF垂直平分BC,
∴BB′=B′C,
由第二次折叠可知:BC=B′C,
∴BB′=B′C=BC,
∴△B′BC是等边三角形;

(3)△GCC′是等边三角形,
理由是:∵由折叠可知,GH垂直平分CC′,
∴G′C=GC,
∵由(2)可知∠GCB=∠GCB′=
| 1 |
| 2 |
∴∠GCC′=∠BCD-∠BCG=60°,
∴△GCC′是等边三角形.
看了 观察与发现:(1)小明将三角...的网友还看了以下:
小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处 2020-04-27 …
已知正方形ABCD,将三角板的直角顶点P放在正方形的对角线AC上,使一条直角边经过点B,另一条直角 2020-05-16 …
(2012•乌鲁木齐)如图是一张足够长的矩形纸条ABCD,以点A所在直线为折痕,折叠纸条,使点B落 2020-05-17 …
(2013•大兴区二模)在三角形纸片ABC中,已知∠ABC=90°,AB=6,BC=8.过点A作直 2020-06-12 …
已知:如图,线段AB和射线BM交于点B.(1)利用尺规完成以下作图,并保留作图痕迹(不写作法).① 2020-07-30 …
如图所示,把矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE,过B点折纸片使D 2020-11-04 …
现在很多城市工交线路上使用“非接触式IC卡”,该卡应用物理学上的电磁感应原理。持卡者只要在车门口的收 2020-11-15 …
下列有关安全用电的说法中,正确的是()A.大功率用电器可以同时插在接线板上使用B.冰箱的外壳接地可以 2020-12-05 …
220v电能表在110v的线路上使用能正确计量电能吗 2020-12-05 …
如图所示是一种多功能蒸汽熨斗,其说明书的部分内容如下:请回答下列问题:(1)“请勿在同一线路上使用大 2020-12-05 …