早教吧作业答案频道 -->数学-->
设x/z=ln(z/y),求d^2z/dx^2和d^2z/dy^2用多元函数方法求隐函数的二阶导数F=x/z-ln(z/y)Fx=1/zFy=...Fz=...用这样的做法,求详解.
题目详情
设x/z=ln(z/y),求d^2z/dx^2和d^2z/dy^2 用多元函数方法求隐函数的二阶导数
F=x/z-ln(z/y)
Fx=1/z Fy=...Fz=...
用这样的做法,求详解.
F=x/z-ln(z/y)
Fx=1/z Fy=...Fz=...
用这样的做法,求详解.
▼优质解答
答案和解析
F(x,y,z)=x/z-ln(z/y)=0
Fx+Fz*dz/dx=0 => dz/dx=-Fx/Fz
Fy+Fz*dz/dy=0 => dz/dy=-Fy/Fz
Fx=1/z,
Fy=-y/z*(-z/y^2)=1/y
Fz=-x/z^2-y/z*(1/y)=-x/z^2-1/z
dz/dx=-Fx/Fz=(-1/z)/(-x/z^2-1/z)=z/(x+z)
d^2z/dx^2=d(dz/dx)/dx=d(-Fx/Fz)/dx+d(-Fx/Fz)/dz*dz/dx
=-z/(x+z)^2+[(x+z)-z]/(x+z)^2*z/(x+z)
=z/(x+z)^2*[x/(x+z)-1]
=-z^2/(x+z)^3
dz/dy=-Fy/Fz=(-1/y)/(-x/z^2-1/z)=z/y*z/(x+z)=z^2/[y(x+z)]
d^2z/dy^2=d(dz/dy)/dy=d(-Fy/Fz)/dy+d(-Fy/Fz)/dz*dz/dy
=z^2/(x+z)*(-1/y^2)+1/y*[2z(x+z)-z^2]/(x+z)^2*z^2/[y(x+z)]
=-z^2/[y^2(x+z)]+z^2/[y^2(x+z)]*(z^2+2xz)/(x+z)^2
=z^2/[y^2(x+z)]*[(z^2+2xz)/(x+z)^2-1]
=-x^2z^2/[y^2(x+z)^3]
1/z+(-x/z^2)*dz/dx=1/zdz/dx
Fx+Fz*dz/dx=0 => dz/dx=-Fx/Fz
Fy+Fz*dz/dy=0 => dz/dy=-Fy/Fz
Fx=1/z,
Fy=-y/z*(-z/y^2)=1/y
Fz=-x/z^2-y/z*(1/y)=-x/z^2-1/z
dz/dx=-Fx/Fz=(-1/z)/(-x/z^2-1/z)=z/(x+z)
d^2z/dx^2=d(dz/dx)/dx=d(-Fx/Fz)/dx+d(-Fx/Fz)/dz*dz/dx
=-z/(x+z)^2+[(x+z)-z]/(x+z)^2*z/(x+z)
=z/(x+z)^2*[x/(x+z)-1]
=-z^2/(x+z)^3
dz/dy=-Fy/Fz=(-1/y)/(-x/z^2-1/z)=z/y*z/(x+z)=z^2/[y(x+z)]
d^2z/dy^2=d(dz/dy)/dy=d(-Fy/Fz)/dy+d(-Fy/Fz)/dz*dz/dy
=z^2/(x+z)*(-1/y^2)+1/y*[2z(x+z)-z^2]/(x+z)^2*z^2/[y(x+z)]
=-z^2/[y^2(x+z)]+z^2/[y^2(x+z)]*(z^2+2xz)/(x+z)^2
=z^2/[y^2(x+z)]*[(z^2+2xz)/(x+z)^2-1]
=-x^2z^2/[y^2(x+z)^3]
1/z+(-x/z^2)*dz/dx=1/zdz/dx
看了 设x/z=ln(z/y),求...的网友还看了以下:
数学达人请进(概率和数理统计)设随机变量§和n相互独立,且均服从两点分布B(1,p),求(§,n) 2020-04-27 …
关于等差数列的前n项和(1)已知S8=48,S12=168,求a1和d(2)已知a6=10,S5= 2020-06-06 …
在等差数列{an}中,(1)已知a3=31,a7=76,求a1和d(2)已知a4=4,a8=-4, 2020-07-09 …
在等差数列{an}中,得到了a2+a4=2a3,代入a2+a3+a4=15,得a3=5,我想问的是 2020-07-09 …
设{an}为等差数列,且公差d为正数,已知a2+a3+a4=15,又a2,a3-1,a4成等比数列 2020-07-09 …
数学问题等差数列an的公差与等比数列bn的公比都是d(d不等于1),且a1=b1a4=b4a10= 2020-07-09 …
简单数列问题等差数列{an}的公差和等比数列{bn}的公比都是d,且a1=b1,a4=b4,a10 2020-07-09 …
1.已知等差数列an的首相和等比数列bn的首项相等,公差和公比都是d,又知d不等于1,且a4=b, 2020-07-09 …
如图,△ABC中,∠ABC的平分线与∠ACE的平分线相交于点D,(1)若∠ABC=60°,∠ACB 2020-07-27 …
设随机变量ξ具有分布:P(ξ=k)=1/2^k,求Eξ和Dξ(k为正整数)我知道Eξ可用乘公比再用错 2020-11-03 …