早教吧作业答案频道 -->数学-->
如图,△ABC是一个等边三角形,点D、E分别在AB、AC上,F是BE和CD的交点,已知∠BFC=120°.求证:AD=CE.
题目详情
如图,△ABC是一个等边三角形,点D、E分别在AB、AC上,F是BE和CD的交点,已知∠BFC=120°.求证:AD=CE.


▼优质解答
答案和解析
证明:∵∠BFC=120°,
∴∠ECF=∠BFC-∠CEB=120°-∠CEB,
又△ABC是等边三角形,
∴∠EBC=180°-60°-∠CEB=120°-∠CEB,
∴∠ECF=∠EBC,
即∠DCA=∠EBC,
又∵△ABC是等边三角形,
∴∠CAD=∠BCE=60°,AC=CB
∴△ACD≌△CBE,
∴AD=CE.
∴∠ECF=∠BFC-∠CEB=120°-∠CEB,
又△ABC是等边三角形,
∴∠EBC=180°-60°-∠CEB=120°-∠CEB,
∴∠ECF=∠EBC,
即∠DCA=∠EBC,
又∵△ABC是等边三角形,
∴∠CAD=∠BCE=60°,AC=CB
∴△ACD≌△CBE,
∴AD=CE.
看了 如图,△ABC是一个等边三角...的网友还看了以下:
已知f(x)是R上的奇函数,f(1)=-2,f(3)=1,则ABCD选项选哪个?已知f(x)是R上 2020-04-27 …
已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,直线x=2被椭圆E截 2020-05-16 …
设在a的某邻域内有f(x)有连续的二阶导数,且f'(a)不等于0,求w=(x->a)lim{[[1 2020-06-16 …
已知椭圆C:x2a2+y2b2=1(a>b>0),⊙O:x2+y2=b2,点A,F分别是椭圆C的左 2020-06-21 …
f(x)在[0,1]上有三阶导数,f(1)=0,设F(x)=x^3f(x),证(0,1)内一点A, 2020-06-22 …
怎么由切线方程求反函数的切线方程若函数f(x)存在反函数,且函数f(x)图象在点(a,f(a))处 2020-07-22 …
三角形三个点(a,f(a))(b,f(b))(c,f(c))面积=1/2*行列式,行列式的第一排为 2020-07-25 …
已知F(x)=x(-1/2),在点(a,f)的切线方程交横纵轴的于两点,与原点围成的三角形面积S= 2020-07-30 …
已知f'(x)在点x=0处连续,且lim(x→0)[f'(x)/ln(1+x)]=-1,则A.f( 2020-07-31 …
设y=f(x)在x0点的某邻域内存在三节连续导数,且limx→0f(x)/(x-x0)^3=1,则 2020-07-31 …