早教吧作业答案频道 -->数学-->
如图,在棱长都相等的正三棱柱ABC-A1B1C1中,D,E分别为AA1,B1C的中点.(1)求证:DE∥平面ABC;(2)求证:B1C⊥平面BDE.
题目详情
如图,在棱长都相等的正三棱柱ABC-A1B1C1中,D,E分别为AA1,B1C的中点.

(1)求证:DE∥平面ABC;
(2)求证:B1C⊥平面BDE.

(1)求证:DE∥平面ABC;
(2)求证:B1C⊥平面BDE.
▼优质解答
答案和解析
证明:(1),
∵G,E分别为CB,CB1的中点,
∴EG∥BB1,且EG=
AA1,
又∵正三棱柱ABC-A1B1C1,
∴EG∥AD,EG=AD
∴四边形ADEG为平行四边形.
∴AG∥DE
∵AG⊂平面ABC,DE⊄平面ABC,
所以 DE∥平面ABC.
(2)由可得,取BC中点G
∵正三棱柱ABC-A1B1C1,
∴BB1⊥平面ABC.
∵AG⊂平面ABC,
∴AG⊥BB1,
∵G为BC的中点,AB=AC,
∴AG⊥BC∴AG⊥平面BB1C1C,
∵B1C⊂平面BB1C1C,
∴AG⊥B1C,
∵AG∥DE
∴DE⊥B1C,
∵BC=BB1,B1E=EC
∴B1C⊥BE,
∵BE⊂平面BDE,DE⊂平面BDEBE∩DE=E,
∴B1C⊥平面BDE.
证明:(1),∵G,E分别为CB,CB1的中点,
∴EG∥BB1,且EG=
| 1 |
| 2 |
又∵正三棱柱ABC-A1B1C1,
∴EG∥AD,EG=AD
∴四边形ADEG为平行四边形.
∴AG∥DE
∵AG⊂平面ABC,DE⊄平面ABC,
所以 DE∥平面ABC.
(2)由可得,取BC中点G
∵正三棱柱ABC-A1B1C1,
∴BB1⊥平面ABC.
∵AG⊂平面ABC,
∴AG⊥BB1,
∵G为BC的中点,AB=AC,
∴AG⊥BC∴AG⊥平面BB1C1C,
∵B1C⊂平面BB1C1C,
∴AG⊥B1C,
∵AG∥DE
∴DE⊥B1C,
∵BC=BB1,B1E=EC
∴B1C⊥BE,
∵BE⊂平面BDE,DE⊂平面BDEBE∩DE=E,
∴B1C⊥平面BDE.
看了 如图,在棱长都相等的正三棱柱...的网友还看了以下:
A、B、C三种烃的衍生物所含元素的质量分数都为C:40%,H:6.7%,O:53.3%.又知标准状 2020-04-25 …
a=2011x+2010 b=2011x+2011 C=2011x+2012则多项式a的平方+b的 2020-05-16 …
1.如是B分之A>0,C分之B>0,那么AC()0;如果B分之A<0,C分之B<0,那么AC()0 2020-07-09 …
若a,b,c,d,都是质数,切a的平方+b的平方+c的平方+d的平方=78,a的平方-b的平方=c 2020-07-09 …
急求~~1,在三角形ABC中,a平方+b平方+c平方sinC=2倍根号三乘absinC,判i断三角 2020-07-14 …
U形管的两支管A、B和水平管C都是由内径均匀的细玻璃管做成的,它们的内径与管长相比都可忽略不计.己 2020-07-31 …
1.已知A={(x,y)|y/1-x平方=1},B={(x,y)|y=1-x平方},C={(x,y 2020-08-01 …
若将弹簧测力计和天平都带到月球上.下列说法中正确的是()A.都能正常使用B.都不能正常使用C.天平不 2020-10-30 …
1+a四方小于等于2乘以b-c括号平方,1+b四方小于等于2乘以c-a括号平方,1+c四方小于等于2 2020-11-07 …
三个不等于零数的平方等于一a平方+b平方+c平方=1(abc不等于零)A(B/1+C/1)+B(C/ 2020-11-18 …