早教吧作业答案频道 -->数学-->
y"+2*y'^2/(1-y)=0的通解
题目详情
y"+2*y'^2/(1-y)=0的通解
▼优质解答
答案和解析
令y'=p,则y''=pdp/dy
代入原方程,化简得
p[dp/dy-2p/(y-1)]=0
==>p=0,或dp/dy-2p/(y-1)=0
显然,p=0是dp/dy-2p/(y-1)=0的解
又,由dp/dy-2p/(y-1)=0,得
dp/dy=2p/(y-1)
==>dp/p=2dy/(y-1)
==>ln│p│=2ln│y-1│+ln│C1│
==>p=C1(y-1)² (∵p=0是一个解,∴C1是任意常数)
==>y'=C1(y-1)²
==>dy/(y-1)²=C1dx
==>1/(1-y)=C1x+C2 (C2是任意常数)
==>(C1x+C2)(1-y)=1
故原方程的通解是 (C1x+C2)(1-y)=1 (C1,C2是任意常数).
代入原方程,化简得
p[dp/dy-2p/(y-1)]=0
==>p=0,或dp/dy-2p/(y-1)=0
显然,p=0是dp/dy-2p/(y-1)=0的解
又,由dp/dy-2p/(y-1)=0,得
dp/dy=2p/(y-1)
==>dp/p=2dy/(y-1)
==>ln│p│=2ln│y-1│+ln│C1│
==>p=C1(y-1)² (∵p=0是一个解,∴C1是任意常数)
==>y'=C1(y-1)²
==>dy/(y-1)²=C1dx
==>1/(1-y)=C1x+C2 (C2是任意常数)
==>(C1x+C2)(1-y)=1
故原方程的通解是 (C1x+C2)(1-y)=1 (C1,C2是任意常数).
看了 y"+2*y'^2/(1-y...的网友还看了以下:
函数、极限题……步骤详写奥,亲.1、若f(x-2)=x+1,则f(x).2、设函数lim(x->3 2020-05-13 …
一阶线性微分方程的通解公式(x-2)*dy/dx=y+2*(x-2)^3,求y的通解答案是y=(x 2020-05-16 …
求y'=2^(x+y)的通解, 2020-06-03 …
若微分方程y'=f(x)的通解为y=g(x,C),则微分方程y'=1/x[f(xy)-y]的通解为 2020-06-06 …
可恶数学题证明y=xtan(x+c)(c为任意常数)是方程x*(dy/dx)=x^2+y^2+y的 2020-06-07 …
1.设函数y=x^2+e^2x,则y的50阶导数y^(50)=2.设函数y的n-2阶导数y^(n- 2020-06-18 …
y'=2^(x+y)的通解 2020-06-25 …
求方程的特解,e^y+C1=(x+C2)^2是方程y''+(y')^2=2e^(-y)的通解求满足 2020-07-31 …
函数y=Ce^x^2-1是微分方程dy/dx=2x(1+y)的通解还是特解 2020-07-31 …
求微分方程y''=(y')^2+y'的通解 2020-07-31 …