早教吧作业答案频道 -->数学-->
如图,已知直线l1∥l2∥l3∥l4∥l5,相邻两条平行直线间的距离相等且为1,如果四边形ABCD的四个顶点在平行直线上,∠BAD=90°且AB=3AD,DC⊥l4,则四边形ABCD的面积是()A.9B.14C.213D.516
题目详情
123454

D.
21 21 3 3
51 51 6 6

| 21 |
| 3 |
D.
| 51 |
| 6 |
| 21 |
| 3 |
| 51 |
| 6 |
| 51 |
| 6 |
▼优质解答
答案和解析
延长DC交l55于点F,延长CD交l11于点E,作点B作BH⊥l11于点H,连接BD,
∵DC⊥l44,l11∥l22∥l33∥l44∥l55,
∴DC⊥l11,DC⊥l55,
∴∠BHA=∠DEA=90°,
∴∠ABH+∠BAH=90°,
∵∠BAD=90°,
∴∠BAH+∠DAE=90°,
∴∠ABH=∠DAE,
∴△BAH∽△ADE,
∴
=
=
,
∵AB=3AD,BH=4,DE=1,
∴AE=
,AH=3,
∴BF=HE=AH+AE=3+
=
,
在Rt△ADE中,AD=
=
=
,
∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
AB•AD+
CD•BF=
×5×
+
×2×
=
.
故选D.
AB AB ABAD AD AD=
=
,
∵AB=3AD,BH=4,DE=1,
∴AE=
,AH=3,
∴BF=HE=AH+AE=3+
=
,
在Rt△ADE中,AD=
=
=
,
∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
AB•AD+
CD•BF=
×5×
+
×2×
=
.
故选D.
BH BH BHAE AE AE=
,
∵AB=3AD,BH=4,DE=1,
∴AE=
,AH=3,
∴BF=HE=AH+AE=3+
=
,
在Rt△ADE中,AD=
=
=
,
∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
AB•AD+
CD•BF=
×5×
+
×2×
=
.
故选D.
AH AH AHDE DE DE,
∵AB=3AD,BH=4,DE=1,
∴AE=
,AH=3,
∴BF=HE=AH+AE=3+
=
,
在Rt△ADE中,AD=
=
=
,
∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
AB•AD+
CD•BF=
×5×
+
×2×
=
.
故选D.
4 4 43 3 3,AH=3,
∴BF=HE=AH+AE=3+
=
,
在Rt△ADE中,AD=
=
=
,
∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
AB•AD+
CD•BF=
×5×
+
×2×
=
.
故选D.
4 4 43 3 3=
,
在Rt△ADE中,AD=
=
=
,
∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
AB•AD+
CD•BF=
×5×
+
×2×
=
.
故选D.
13 13 133 3 3,
在Rt△ADE中,AD=
=
=
,
∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
AB•AD+
CD•BF=
×5×
+
×2×
=
.
故选D.
AE2+DE2 AE2+DE2 AE2+DE22+DE22=
=
,
∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
AB•AD+
CD•BF=
×5×
+
×2×
=
.
故选D.
(
)2+12 (
)2+12 (
4 4 43 3 3)2+122+122=
,
∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
AB•AD+
CD•BF=
×5×
+
×2×
=
.
故选D.
5 5 53 3 3,
∴AB=3AD=5,
∴S四边形ABCD四边形ABCD=S△ABD△ABD+S△BCD△BCD=
AB•AD+
CD•BF=
×5×
+
×2×
=
.
故选D.
1 1 12 2 2AB•AD+
CD•BF=
×5×
+
×2×
=
.
故选D.
1 1 12 2 2CD•BF=
×5×
+
×2×
=
.
故选D.
1 1 12 2 2×5×
+
×2×
=
.
故选D.
5 5 53 3 3+
×2×
=
.
故选D.
1 1 12 2 2×2×
=
.
故选D.
13 13 133 3 3=
.
故选D.
51 51 516 6 6.
故选D.
延长DC交l55于点F,延长CD交l11于点E,作点B作BH⊥l11于点H,连接BD,∵DC⊥l44,l11∥l22∥l33∥l44∥l55,
∴DC⊥l11,DC⊥l55,
∴∠BHA=∠DEA=90°,
∴∠ABH+∠BAH=90°,
∵∠BAD=90°,
∴∠BAH+∠DAE=90°,
∴∠ABH=∠DAE,
∴△BAH∽△ADE,
∴
| AB |
| AD |
| BH |
| AE |
| AH |
| DE |
∵AB=3AD,BH=4,DE=1,
∴AE=
| 4 |
| 3 |
∴BF=HE=AH+AE=3+
| 4 |
| 3 |
| 13 |
| 3 |
在Rt△ADE中,AD=
| AE2+DE2 |
(
|
| 5 |
| 3 |
∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 3 |
| 1 |
| 2 |
| 13 |
| 3 |
| 51 |
| 6 |
故选D.
| AB |
| AD |
| BH |
| AE |
| AH |
| DE |
∵AB=3AD,BH=4,DE=1,
∴AE=
| 4 |
| 3 |
∴BF=HE=AH+AE=3+
| 4 |
| 3 |
| 13 |
| 3 |
在Rt△ADE中,AD=
| AE2+DE2 |
(
|
| 5 |
| 3 |
∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 3 |
| 1 |
| 2 |
| 13 |
| 3 |
| 51 |
| 6 |
故选D.
| BH |
| AE |
| AH |
| DE |
∵AB=3AD,BH=4,DE=1,
∴AE=
| 4 |
| 3 |
∴BF=HE=AH+AE=3+
| 4 |
| 3 |
| 13 |
| 3 |
在Rt△ADE中,AD=
| AE2+DE2 |
(
|
| 5 |
| 3 |
∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 3 |
| 1 |
| 2 |
| 13 |
| 3 |
| 51 |
| 6 |
故选D.
| AH |
| DE |
∵AB=3AD,BH=4,DE=1,
∴AE=
| 4 |
| 3 |
∴BF=HE=AH+AE=3+
| 4 |
| 3 |
| 13 |
| 3 |
在Rt△ADE中,AD=
| AE2+DE2 |
(
|
| 5 |
| 3 |
∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 3 |
| 1 |
| 2 |
| 13 |
| 3 |
| 51 |
| 6 |
故选D.
| 4 |
| 3 |
∴BF=HE=AH+AE=3+
| 4 |
| 3 |
| 13 |
| 3 |
在Rt△ADE中,AD=
| AE2+DE2 |
(
|
| 5 |
| 3 |
∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 3 |
| 1 |
| 2 |
| 13 |
| 3 |
| 51 |
| 6 |
故选D.
| 4 |
| 3 |
| 13 |
| 3 |
在Rt△ADE中,AD=
| AE2+DE2 |
(
|
| 5 |
| 3 |
∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 3 |
| 1 |
| 2 |
| 13 |
| 3 |
| 51 |
| 6 |
故选D.
| 13 |
| 3 |
在Rt△ADE中,AD=
| AE2+DE2 |
(
|
| 5 |
| 3 |
∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 3 |
| 1 |
| 2 |
| 13 |
| 3 |
| 51 |
| 6 |
故选D.
| AE2+DE2 |
(
|
| 5 |
| 3 |
∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 3 |
| 1 |
| 2 |
| 13 |
| 3 |
| 51 |
| 6 |
故选D.
(
|
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 5 |
| 3 |
∴AB=3AD=5,
∴S四边形ABCD=S△ABD+S△BCD=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 3 |
| 1 |
| 2 |
| 13 |
| 3 |
| 51 |
| 6 |
故选D.
| 5 |
| 3 |
∴AB=3AD=5,
∴S四边形ABCD四边形ABCD=S△ABD△ABD+S△BCD△BCD=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 3 |
| 1 |
| 2 |
| 13 |
| 3 |
| 51 |
| 6 |
故选D.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 3 |
| 1 |
| 2 |
| 13 |
| 3 |
| 51 |
| 6 |
故选D.
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 3 |
| 1 |
| 2 |
| 13 |
| 3 |
| 51 |
| 6 |
故选D.
| 1 |
| 2 |
| 5 |
| 3 |
| 1 |
| 2 |
| 13 |
| 3 |
| 51 |
| 6 |
故选D.
| 5 |
| 3 |
| 1 |
| 2 |
| 13 |
| 3 |
| 51 |
| 6 |
故选D.
| 1 |
| 2 |
| 13 |
| 3 |
| 51 |
| 6 |
故选D.
| 13 |
| 3 |
| 51 |
| 6 |
故选D.
| 51 |
| 6 |
故选D.
看了 如图,已知直线l1∥l2∥l...的网友还看了以下:
已知a,b是非零向量,且满足(a-2b)垂直a,(b-2a)垂直b,则a与b的夹角是多少?求过程. 2020-04-05 …
已知a,b是非零向量,且满足(a-2b)垂直a,(b-2a)垂直b,则a与b的夹角是多少? 2020-04-06 …
a b是非零向量且满足(a-2b)垂直a,(b-2a)垂直b,则a与b的夹角是如题已知(a-2b) 2020-05-15 …
关于高中直线函数问题拜托各位了3Q直线x+a^2y+1=0与直线(a^2+1)x-by+3=0互相 2020-05-16 …
若向量a=(cosA,sinA),b=(cosB,sinB),a与b不共线,则a 与b一定满足A、 2020-05-16 …
求解2道平面向量的数量积的题(需要详细过程)1.已知非0向量a,b,若a.b=0,则|a-2b|比 2020-05-17 …
已知向量a不等于b,|b|不等于1,对任意t属于R,恒有|a-tb|大等于|a-b|.现给出下列四 2020-05-20 …
求证明…不胜感激…第二积分中值定理第二积分中值定理第二积分中值定理:若1)f(x)在[a,b]上非 2020-08-01 …
A,B两平行金属板竖直放置.用3cm长的细线拴以质量为0.1g,电荷量为1.0*10^(-6)C的小 2021-01-09 …
不共线的两个向量a,b,且a+2b与2a-b垂直,a-b与a垂直,a与b的夹角的余弦值为ab都是向量 2021-02-05 …