早教吧作业答案频道 -->数学-->
如图①,将两块全等的直角三角形纸板摆放在坐标系中,已知BC=4,AC=5.(1)求点A坐标和直线AC的解析式;(2)折三角形纸板ABC,使边AB落在边AC上,设折痕交BC边于点E(图②),求点E坐标
题目详情
如图①,将两块全等的直角三角形纸板摆放在坐标系中,已知BC=4,AC=5.

(1)求点A坐标和直线AC的解析式;
(2)折三角形纸板ABC,使边AB落在边AC上,设折痕交BC边于点E(图②),求点E坐标;
(3)将三角形纸板ABC沿AC边翻折,翻折后记为△AMC,设MC与AD交于点N,请在图③中画出图形,并求出点N坐标.

(1)求点A坐标和直线AC的解析式;
(2)折三角形纸板ABC,使边AB落在边AC上,设折痕交BC边于点E(图②),求点E坐标;
(3)将三角形纸板ABC沿AC边翻折,翻折后记为△AMC,设MC与AD交于点N,请在图③中画出图形,并求出点N坐标.
▼优质解答
答案和解析
(1)∵∠ABC=90°,BC=4,AC=5,
∴AB=
=3,
∴A(0,3),
设y=kx+b,将A(0,3),C(4,0)代入,
得
,
解得b=3,k=-
,
∴y=-
x+3.(4分)
(2)设BE=x,由翻折得B′E=x,AB′=3,∠AB′E=90°.
∴B′C=2,EC=4-x,∠CB′E=90°,
∴B′E2+B′C2=EC2,
∴x2+22=(4-x)2
解得x=
,
∴E(
,0).(6分)
(3)如图:由翻折得∠1=∠2,由已知得∠1=∠3,
∴∠2=∠3,
∴NC=NA
设NA=x,则NC=x,ND=4-x,
∵ND2+DC2=NC2,
∴(4-x)2+32=x2,
解得x=
,
∴N(
,3).
∴AB=
| 52−42 |
∴A(0,3),
设y=kx+b,将A(0,3),C(4,0)代入,
得
|
解得b=3,k=-
| 3 |
| 4 |
∴y=-
| 3 |
| 4 |
(2)设BE=x,由翻折得B′E=x,AB′=3,∠AB′E=90°.

∴B′C=2,EC=4-x,∠CB′E=90°,
∴B′E2+B′C2=EC2,
∴x2+22=(4-x)2
解得x=
| 3 |
| 2 |
∴E(
| 3 |
| 2 |
(3)如图:由翻折得∠1=∠2,由已知得∠1=∠3,
∴∠2=∠3,
∴NC=NA
设NA=x,则NC=x,ND=4-x,
∵ND2+DC2=NC2,
∴(4-x)2+32=x2,
解得x=
| 25 |
| 8 |
∴N(
| 25 |
| 8 |
看了 如图①,将两块全等的直角三角...的网友还看了以下:
已知A={x丨x满足条件P},B={x丨x满足条件B},如果A⊆B,那么p是q的什么条 2020-05-17 …
如果A-B=2,E+B=6,D-A=4,F+B=12,C-E=10,C-B=8,那么C+B=(), 2020-05-21 …
第一题令A={a,b,c,d,e},B={a,b,c,d,e,f,g,h}.求a)A∪Bb)A∩B 2020-06-17 …
如下图中A到F是化合物,且A、B、E、F均含钠元素,G是单质.(1)写出下列物质的化学式:A,B, 2020-06-18 …
设A=(101;020;-101)求满足方程AB+E=A^2+B的矩阵B用AB+E=A^2+B(A 2020-06-18 …
高中函数题:设f(x)=x/e^x,a≠b,f(a)=f(b),比较a+b与2的大小我是这么想的但 2020-07-13 …
晶体管工作在放大区时的偏置状态为().A.b与e极,b与c极间均正向偏置B.b与e极,b与c极间均 2020-07-20 …
求助:矩阵和的n次方解法比如(3E+B)^n=(3E)^n+n*(3E)^(n-1)*B(E+B) 2020-07-29 …
求助:矩阵和的n次方解法比如(3E+B)^n=(3E)^n+n*(3E)^(n-1)*B(E+B) 2020-07-29 …
a、b和D、E打架,致使a和E轻微伤。现a先起诉E、F,而E另立案起诉a、b。起诉与反诉的问题。a. 2021-01-13 …